Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A=x2+5y2-2xy+4y+3
=(x2-2xy+y2)+(4y2+4y+1)+2
=(x-y)2+(2y+1)2+2
Vì \(\left(x-y\right)^2\ge0;\left(2y+1\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\)
\(\Rightarrow A=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Dấu "=" xảy ra khi x=y=-1/2
Vậy Amin=2 khi x=y=-1/2
b, B=(x2-2x)(x2-2x+2)
Đặt x2-2x+1=t, ta có:
B=(t-1)(t+1)=t2-1=(x2-2x+1)-1=(x-1)2-1
Vì (x-1)2\(\ge\) 0
=>B=(x-1)2-1 \(\ge\)-1
Dấu "=" xảy ra khi x=1
Vậy Bmin =-1 khi x=1
c, C=(x+1)(x-2)(x-3)(x-6)
=(x+1)(x-6)(x-2)(x-3)
=(x2-6x+x-6)(x2-3x-2x+6)
=(x2-5x-6)(x2-5x+6)
Đặt x2-5x=t, ta có:
C=(t-6)(t+6)=t2-62=t2-36=(x2-5x)2-36
Vì \(\left(x^2-5x\right)^2\ge0\Rightarrow C=\left(x^2-5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=5
Vậy Cmin=-36 khi x=0 hoặc x=5
a)Ta có: \(A=x^2+5y^2-2xy+4y+3\)= \(\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
= \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
(Do \(\left(x-y\right)^2\ge0;\left(2y+1\right)^2\ge0\))
Vậy min A=2. Dấu = khi x=y=-1/2
b) Đặt \(t=x^2-2x+1\)
=> \(B=\left(t-1\right)\left(t+1\right)\)=\(t^2-1\)=\(t^2+\left(-1\right)\ge-1\)
Do \(t^2\ge0\)
Vậy min B=-1. Dấu = khi t=0 hay \(x^2-2x+1=0\)
=> \(\left(x-1\right)^2=0\)<=> x=1
C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2
C2. ( x + 2 )2 = ( 2x - 1 )2
<=> ( x + 2 )2 - ( 2x - 1 )2 = 0
<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0
<=> [ 3x + 1 ][ 3 - x ] = 0
<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)
b) ( x + 2 )2 - x + 4 = 0
<=> x2 + 4x + 4 - x + 4 = 0
<=> x2 - 3x + 8 = 0
Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x
=> Phương trình vô nghiệm
C3. a) A = x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = 1 , đạt được khi x = 2
b)B = x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy BMin = 3/4, đạt được khi x = 1/2
c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Dấu " = " xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = -5
Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5
d) D = x2 + 5y2 - 2xy + 4y + 3
= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
= ( x - y )2 + ( 2y + 1 )2 + 2
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)
=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
Vậy DMin = 2 , đạt được khi x = y = -1/2
C4. a) ( Cái này tìm được Min k tìm được Max )
A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = -6 , đạt được khi x = 2
b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)
Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4
Vậy BMax = 49/8 , đạt được khi x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy CMax = 9 , đạt được khi x = -1
d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )
C5. a) A = 25x2 - 20x + 7
A = 25x2 - 20x + 4 + 3
A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )
b) B = 9x2 - 6xy + 2y2 + 1
B = ( 9x2 - 6xy + y2 ) + y2 + 1
B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )
c) C = x2 - 2x + y2 + 4y + 6
C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1
C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )
d) D = x2 - 2x + 2
D = x2 - 2x + 1 + 1
D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )
G = x2 - 3x + 5
= ( x2 - 3x + 9/4 ) + 11/4
= ( x - 3/2 )2 + 11/4 ≥ 11/4 ∀ x
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MinG = 11/4 <=> x = 3/2
H = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinH = 5 <=> x = 0
I = x2 - 2x + y2 - 4y + 10
= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 5
= ( x - 1 )2 + ( y - 2 )2 + 5 ≥ 5 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
=> MinI = 5 <=> x = 1 ; y = 2
K = x2 + 5y2 - 2xy + 4y + 3
= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
= ( x - y )2 + ( 2y + 1 )2 + 2 ≥ 2 ∀ x, y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
=> MinK = 2 <=> x = y = -1/2
E = 2x2 + y2 + 2xy - 4x + 14
= ( x2 + 2xy + y2 ) + ( x2 - 4x + 4 ) + 10
= ( x + y )2 + ( x - 2 )2 + 10 ≥ 10 ∀ x, y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-2\end{cases}}\)
=> MinE = 10 <=> x = 2 ; y = -2
TL:
C=\(\frac{2020}{-\left(x^2+2x-2020\right)}\)
=\(\frac{2020}{-\left(x^2+2x+1-2021\right)}=\frac{2020}{-\left(x+1\right)^2+2021}\)
Để Cmin thì \(-\left(x+1\right)^2+2021\) lớn nhất
vì \(-\left(x+1\right)^2+2021\le2021\) =>-(x+1)+2021 lớn nhất =2021
vậy Cmin=\(\frac{2020}{2021}\)
Bài 1.
a) A = -x2 - 4x - 2 = -( x2 + 4x + 4 ) + 2 = -( x + 2 )2 + 2
\(-\left(x+2\right)^2\le0\forall x\Rightarrow-\left(x+2\right)^2+2\le2\)
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MaxA = 2 <=> x = -2
b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8
\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)
Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4
=> MaxB = 49/8 <=> x = -3/4
c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9
\(-\left(x+1\right)^2\le0\forall x\Rightarrow-\left(x+1\right)^2+9\le9\)
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxC = 9 <=> x = -1
d) D = -8x2 + 4xy - y2 + 3 = -( 4x2 - 4xy + y2 ) - 4x2 + 3 = -( 2x - y )2 - 4x2 + 3
\(\hept{\begin{cases}-\left(2x-y\right)^2\le0\forall x,y\\-4x^2\le0\forall x\end{cases}}\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-y=0\\4x=0\end{cases}}\Rightarrow x=y=0\)
=> MaxD = 3 <=> x = y = 0
Bài 2.
a) A = x2 - 2x + 5 = ( x2 - 2x + 1 ) + 4 = ( x - 1 )2 + 4
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+4\ge4\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinA = 4 <=> x = 1
b) B = x2 - x + 1 = ( x2 - 2.1/2.x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2
=> MinB = 3/4 <=> x = 1/2
c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
C = [( x - 1 )( x + 6 )][( x + 2 )( x + 3)]
C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
C = [ ( x2 + 5x ) - 6 ][ ( x2 + 5x ) + 6 ]
C = ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> \(x^2+5x=0\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
=> MinC = -36 <=> x = 0 hoặc x = -5
d) D = x2 + 5y2 - 2xy + 4y + 3
D = ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2
D = ( x - y )2 + ( 2y + 1 )2 + 2
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(2y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)
=> MinD = 2 <=> x = y = -1/2
a) Đặt \(A=x^2-2x+1\)
Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A_{min}=0\)
Dấu "=" xảy ra khi: \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)
b) Ta có: \(M=x^2-3x+10\)
\(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)
\(\Rightarrow\)\(M_{min}=\frac{31}{4}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)
Ta có : \(x^2+y^2-2x+4y+1\)
\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)-4\)
\(A=\left(x-1\right)^2+\left(y+2\right)^2-4\)
Vì \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\in R\)
Nên : \(A=\left(x-1\right)^2+\left(y+2\right)^2-4\ge-4\forall x,y\in R\)
Vậy \(A_{min}=-4\) khi x = 1 và y = -2