Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
a)
\(A=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\)
CÓ: \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)
=> \(A\ge1\)
DẤU "=" XẢY RA <=> \(x=2\)
b)
\(2B=4x^2+6x+2=\left(2x+\frac{3}{2}\right)^2-0,25\)
CÓ: \(\left(2x+\frac{3}{2}\right)^2\ge0\forall x\Rightarrow\left(2x+\frac{3}{2}\right)^2-0,25\ge-0,25\)
DẤU "=" XẢY RA <=> \(2x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{4}\)
c)
\(C=\left(2x+\frac{5}{4}\right)^2-\frac{73}{16}\ge-\frac{73}{16}\)
DẤU "=" XẢY RA <=> \(2x+\frac{5}{4}=0\Leftrightarrow x=-\frac{5}{8}\)
a. Ta có :
\(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow\left(x-2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
b. \(B=2x^2+3x+1=2\left(x+\frac{3}{4}\right)^2-\frac{1}{8}\)
Vì \(\left(x+\frac{3}{4}\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+\frac{3}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x+\frac{3}{4}\right)^2=0\Leftrightarrow x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{4}\)
Vậy Bmin = - 1/8 <=> x = - 3/4
c. \(C=5x-3+4x^2=4\left(x+\frac{5}{8}\right)^2-\frac{73}{16}\)
Vì \(\left(x+\frac{5}{8}\right)^2\ge0\forall x\)\(\Rightarrow4\left(x+\frac{5}{8}\right)^2-\frac{73}{16}\ge-\frac{73}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow4\left(x+\frac{5}{8}\right)^2=0\Leftrightarrow x+\frac{5}{8}=0\Leftrightarrow x=-\frac{5}{8}\)
Vậy Cmin = - 73/16 <=> x = - 5/8
\(A=x\left(x+1\right)\left(x^2+x-4\right)=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(x^2+x=a\) nên \(A=a\left(a-4\right)=a^2-4a+4-4=\left(a-2\right)^2-4\ge-4\)
Dấu "=" xảy ra \(\Leftrightarrow a-2=0\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy \(A_{min}=-4\) tại \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
B;C tương tự
\(A=x^2+3x-5=x^2+3x+\frac{9}{4}-\frac{29}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
Vậy \(A_{min}=-\frac{29}{4}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)