Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A= I 2x-3 I + 1/2 bé nhất thì I 2x-3 I phải bé nhất, mà I 2x-3 I bé hơn hoặc = 0=> I2x-3 I =0 => 2x=3=> x=3/2
Vậy giá trị nhỏ nhất của A là 1/2 tại x= 3/2
b) Để B nhỏ nhất thì | 5x + 6 | phải nhỏ nhất, mà | 5x + 6 | bé hơn hoặc = 0=> | 5x + 6 |=0 => x= -6/5
Vậy giá trị nhỏ nhất của B là -0.25 tại x=-6/5
c) Để C nhỏ nhất thì Ix-3I hoặc I x+7I phải nhỏ nhất, mà I x-3 I và Ix-7I bé hơn hoặc = 0 => x-3 = 0 hoặc x+7 = 0
=> x=3 hoặc x= -7
Thay x=3 vào C, có: | 3- 3 | + | 3 + 7 | = 0+ 10 = 10
Thay x=7 vào C, có: | -7 - 3 | + | -7 + 7 | = 10+0 = 10
=> giá trị nhỏ nhất của C là 10 tại x=3 hoặc x=7
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
a, Ta có :
\(A=\frac{2}{6-x}\). Để A có GTLN => 6 - x có GTNN và 6 - x > 0
Mà \(6-x\ne0\Rightarrow6-x=1\Rightarrow x=5\)
\(\Rightarrow A=\frac{2}{1}=2\) khi x = 5
b, \(B=\frac{8-x}{x-3}=\frac{-\left(x-3\right)+5}{x-3}=-1+\frac{5}{x-3}\)
Để B có GTNN \(\Rightarrow\frac{5}{x-3}\) có GTNN => x-3 có GTNN và x - 3 < 0
Mà \(x-3\ne0\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=-1+\frac{5}{-1}=-6\) khi x = 2
ta có: |a-b|=|b-a|
=> \(\left|x^2+x+3\right|+\left|x^2+x-6\right|=\left|x^2+x+3\right|+\left|6-x^2-x\right|\)
áp dụng bđt: |a|+|b|>= |a+b| ta có: \(\left|x^2+x+3\right|+\left|6-x^2-x\right|\ge\left|x^2+x+3+6-x^2-x\right|=\left|9\right|=9\Rightarrow Min=9\Leftrightarrow x=0\)
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
\(\left|x-2\right|+6\ge6\forall x\)
Dấu '=' xảy ra khi x=2