Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức GTTĐ \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|\)
Thay x+y=5 vào A ta có :
\(A\ge\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)
Vậy Amin = 4 <=> x >=-1 và y >=2
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)
Vậy:\(A_{Min}=4\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
a, |3-2x|=x+1
Đặt ĐK x+1>=0
Suy ra 3-2x=\(\orbr{\begin{cases}x+1\\-x-1\end{cases}}\)
TH1:3-2x=x+1
suy ra -3x=-2
suy ra x=\(\frac{2}{3}\)(t/m)
TH2: 3-2x=-x-1
suy ra x=-4(loại vì ktm đk)
vậy x=2/3
b,câu b bản chỉ phân tích vế trái thôi nhé
phân tích 2013 ra 1+1+....+1 ( 2013 số 1 vào tất cả số hag bên trai)
xong bạn dc x=2014
Hok tốt lười giải wa
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Ta có :
A=|x-2013|+|x-2014|+|x-2015|
<=> A=|2013-x|+|x-2014|+|x-2015|
>hoặc =|2013-x+x+2015|+|x-2014
=|2|+|x-2015|=2+|x-2015|
=>GTNN của A =2 khi :
|x-2015|=0=>x-2015=0=>x=2015
Vậy GTNN của A=2 khi x=2015
A = |x - 3013| + |2014 - x| + |x - 2015|
có : |x - 2013| > x - 2013
|2014 - x| > 2014 - x
|x - 2015| > 0
=> A > x - 2013 + 2014 - x
=> A > 1
=> Min A = 1
dấu = xảy ra khi
...