Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-2016\right|+\left|x-2017\right|+\left|x-2015\right|\)
\(A= \left|x-2016\right|+\left|2017-x\right|+\left|x-2015\right|\)
\(A\ge\left|x-2016\right|+\left|2017-x+x-2015\right|\)
\(A\ge\left|x-2016\right|+2\ge2\)
\("="\Leftrightarrow\hept{\begin{cases}x=2016\\2015\le x\le2017\end{cases}}\Leftrightarrow x=2016\)
\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)
\(\ge\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(=2+\left|x-2016\right|\ge2\)
Dấu "=" khi \(\hept{\begin{cases}x-2016=0\\\left(x-2015\right)\left(2017-x\right)\ge0\end{cases}}\Leftrightarrow x=2016\)
Tìm giá trị nhỏ nhất của biểu thức P=\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
Ta có \(A=\left|2x-2015\right|+\left|2017-2x\right|+\left|x-1008\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :
\(A\ge\left|2x-2015+2017-2x\right|+\left|x-1008\right|=2+\left|x-1008\right|\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2015\right)\left(2x-2017\right)\ge0\) và \(\left|x-1008\right|=0\)
\(\Rightarrow\dfrac{2015}{2}\le x\le\dfrac{2017}{2}\) và \(x=1008\) \(\Rightarrow x=1008\) (TM)
Vậy GTNN của A là 2 tại \(x=1008\)
A=|2x-2016|+|2x-2017|
Th1: x<2016
=>|2x-2016|<0
=>|2x-2017|<0
=>|2x-2016|=-(2x-2016)=2016-2x
=>|2x-2017|=-(2x-2017)=2017-2x
thay vào ta có:
2016-2x+2017-2x=4033-4x
A nhỏ nhất khi 4x lớn nhất có thể
thay x=2015 ta có:
A=4033-4.2015=8060
vậy khi x=2015 thì A=8060
Th2: