K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

Ta có \(\hept{\begin{cases}\left|x-1,5\right|\ge0\forall x\\\left|2x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x-1,5\right|+\left|2x-3\right|-7\ge-7\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1,5=0\\2x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1,5\\x=1,5\end{cases}}\Rightarrow x=1,5}\)

Vậy GTNN của A là - 7 khi x = 1,5

11 tháng 8 2020

\(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

=> \(\left|x+\frac{4}{15}\right|-3,75=-2,15\)

=> \(\left|x+\frac{4}{15}\right|=\frac{8}{5}\)

+) \(x+\frac{4}{15}=\frac{8}{5}\)

=> \(x=\frac{8}{5}-\frac{4}{15}=\frac{24}{15}-\frac{4}{15}=\frac{20}{15}=\frac{4}{3}\)

+) \(x+\frac{4}{15}=-\frac{8}{5}\)

=> \(x=-\frac{8}{5}-\frac{4}{15}\)

=> \(x=-\frac{24}{15}-\frac{4}{15}=-\frac{28}{15}\)

11 tháng 8 2020

\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)

\(|x+\frac{4}{15}|-3,75=-2,15\)

\(|x+\frac{4}{15}|=-2,15+3,75\)

\(|x+\frac{4}{15}|=1,6\)

Ta có : \(|x+\frac{4}{15}|\ge0\forall x\)

\(\Rightarrow|x+\frac{4}{15}|=x+\frac{4}{15}\)

\(\Rightarrow x+\frac{4}{15}=1,6\)

\(x+\frac{4}{15}=\frac{8}{5}\)

\(x=\frac{8}{5}-\frac{4}{15}\)

\(x=\frac{4}{3}\)

18 tháng 11 2015

a) x+2 >/ 0 => x >/ -2

+2x +3 =x+2 => x =-1 TM

+2x+3 =-x-2 => 3x =-5 => x =-5/3 < -2  loại

Vậy x = -1

b) A = /x+2006/ + / 2007-x/  >/ /x+2006 + 2007 -x /  = 4013

A nhonhat =4013 khi         -2006</ x </ 2007

23 tháng 1 2018

bạn làm sai rồi

17 tháng 6 2017

Ta có : |2x - 3| \(\ge0\forall x\in R\)

Suy ra : 1 - |2x - 3| \(\le1\forall x\in R\)

=> Giá trị lớn nhất của biểu thức là 1 khi x = 3/2 

4 tháng 8 2018

Hãy tích cho tui đi

khi bạn tích tui

tui không tích lại bạn đâu

THANKS

8 tháng 5 2016

Ta có \(\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|\text{b }\right|\ge\left|a+b\right|\) dấu đẳng thức xảy ra khi \(ab\ge0\)

Khi đó ta có \(\left|2002-x\right|+\left|x-2001\right|\ge\left|x-2001+2002-x\right|=\left|1\right|=1\)

Vậy min của biểu thức trên bằng 1 khi \(\left(x-2001\right)\left(2002-x\right)\ge0\) tức là \(2001\le x\le2002\)