K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

29 tháng 10 2016

GTNN A= 2 khi x=2016

18 tháng 3 2021

\(A=\left(x+2\right)^2+\left|x+2\right|+15\)

Ta có:

\(\left(x+2\right)^2\ge0\forall x\)

\(\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)

\(\Rightarrow A\ge15\)Dấu bằng xảy ra.

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy \(minA=15\Leftrightarrow x=-2\)

22 tháng 8 2017

a) Giá trị nhỏ nhất của biểu thức này là :8

b)Giá trị nhỏ nhất của biểu thức này là :22

22 tháng 8 2017

Các bạn có thể giải thích rõ ràng đc ko ạ!!!

1 tháng 7 2019

\(A=\left|x+\frac{3}{2}\right|\)

Vì \(\left|x+\frac{3}{2}\right|\ge0\)

Vậy \(GTNN_A=0\)tại \(x=\frac{-3}{2}\)

\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)

Vì \(\left|x-\frac{1}{2}\right|\ge0\)nên \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(GTNN_B=\frac{3}{4}\)tại \(x=\frac{1}{2}\)

1 tháng 7 2019

\(A=\left|x+\frac{3}{2}\right|=x+\frac{3}{2}\)