K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
20 tháng 6 2021

\(A=a+\frac{2}{a^2}=\frac{1}{2}a+\frac{1}{2}a+\frac{2}{a^2}\ge3\sqrt[3]{\frac{1}{2}a.\frac{1}{2}a.\frac{2}{a^2}}=3\sqrt[3]{\frac{1}{2}}\)

Dấu \(=\)khi \(\frac{1}{2}a=\frac{2}{a^2}\Leftrightarrow a=\sqrt[3]{4}\).

18 tháng 2 2021

Giải giúp mình với ạ Giá trị nhỏ nhất của biểu thức P=x+4/x với x >0 là A 8 B 3 C 4 D 2

=>X=4 thay vào nha

18 tháng 2 2021

Là sao chứ 

10 tháng 4 2021

Ấp dụng bất đẳng thức Bu-nhi -a- cốp-xki :

\(P^2 = (2x + 3y)^2 \leq (2^2+3^2)(x^2+y^2)=13a^2=117 \rightarrow a^2 = 9 \rightarrow a= 3 hoặc -3\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Lời giải:

$A=\frac{x}{3}+5+\frac{12}{x}$

Áp dụng BĐT Cô-si cho các số dương:

$\frac{x}{3}+\frac{12}{x}\geq 2\sqrt{\frac{x}{3}.\frac{12}{x}}=4$

$\Rightarrow A\geq 4+5=9$

Vậy $A_{\min}=9$. Giá trị này đạt được khi $x=6$

29 tháng 7 2020

Vì x > 0 nên \(\frac{x}{3}>0,\frac{9}{x}>0\)

Áp dụng BĐT Cauchy cho 2 số dương, ta được:

\(\frac{x}{3}+\frac{9}{x}\ge2\sqrt{\frac{x}{3}.\frac{9}{x}}=2\sqrt{3}\)

Đẳng thức xảy ra khi \(x^2=27\Leftrightarrow x=3\sqrt{3}\)(Vì x > 0)