K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

Ta có :

\(A=2x^2+9y^2-6xy-6x-12y+2004.\)

\(=\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+x^2-10x+2004\)

\(=\left(x-3y\right)^2=4\left(x-3y\right)+x^2-10y+25+1975\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975>1975\)

\(A_{min}=1975=x=5;y=\frac{7}{3}\)

Vậy

29 tháng 12 2021

A = 2x2+9y2-6xy-6x-12y+2021

<=> A=x^2 + x^2 + 9y^2 - 6xy + 4x - 10x-12y + 1992 + 25 + 4 

<=> A=(x^2 - 6xy + 9y^2) + (4x-12y)+4+x^2-10x+25+1992

<=> A= (x- 3y)^2 + 4(x-3y) + 4 + (x-5)^2 +1992

<=> A = (x-3y+2)^2 + (x-5)^2 +1992

Vì : (x-3y+2)^2 + (x-5)^2  > 0

=>  (x-3y+2)^2 + (x-5)^2 +1992 > 1992

Dấu "=" xảy ra khi và chỉ khi :  \(\hept{\begin{cases}\left(x-5\right)^2=0\\\left(x-3y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-5=0\\x-3y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=5\\5-3y=-2\end{cases}}}\)

\(\hept{\begin{cases}x=5\\-3y=-2-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\-3y=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}}\)

Vậy Amin = 1992 khi x=5 ; y=7/3

21 tháng 9 2018

\(A=2x^2+9y^2-6xy-6x-12y+2004\)

\(A=\left(3y\right)^2-2\cdot3y\cdot2+2^2+2x^2-6x+2000\)

\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2\right)+1997,75\)

\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1997,75\)

\(A\ge1997,75\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}}\)

Vậy,.........

21 tháng 9 2018

Sửa cho Bonking ( bắt đầu dòng 3 )

\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right)+2000\)

\(A=\left(3y-2\right)^2+2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+2000\)

\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}+2000\)

\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1995,5\)

\(A\ge1995,5\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}\)

Vậy,.........