K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

ta có: A = 2x2 + 10x + 1

A = 2.(x2 + 5x + 1/2)

A = 2.(x2 + 2x.5/2 + 25/4 -23/4)

A = 2.[ (x+5/2)2 -23.4 ]

A = 2.(x+5/2)2 - 23/2

Để A nhỏ nhất

\(\Rightarrow2.\left(x+\frac{5}{2}\right)^2\) nhỏ nhất

mà \(2.\left(x+\frac{5}{2}\right)^2\ge0\)

Dấu "=" xảy ra khi:

2.(x+5/2) = 0

x+5/2 = 0 

x = -5/2

=> giá trị nhỏ nhất của A = 2.(-5/2)2 + 10.(-5/2) + 1 = -23/2

17 tháng 12 2023

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

23 tháng 10 2021

a: ta có: \(P=x^2+10x+27\)

\(=x^2+10x+25+2\)

\(=\left(x+5\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=-5

18 tháng 7 2019

A = x2 - 6x + 11 

Nhập phương trình vào máy tính lặp 3 lần  dấu =

GTNN của A = 3

B = 2x2 + 10x - 1

Nhập phương trình vào máy tính lặp 3 lần dấu =

GTNN của B = \(-\frac{5}{2}\)

C = 5x - x2 

=> C = -x2 + 5x

Nhập phương trình vào máy tính lặp 3 lần dấu =

GTLN của C = \(\frac{5}{2}\)

18 tháng 7 2019

Trả lời

MK trả lời câu hỏi trc của bạn rùi nha 

https://olm.vn/hoi-dap/detail/225394580109.html

hok tốt

22 tháng 12 2021

\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)

22 tháng 12 2021

a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

\(minA=2\Leftrightarrow x=3\)

b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)

\(minB=51\Leftrightarrow x=5\)

c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

NV
11 tháng 7 2021

\(2x^2+6x-5=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{19}{2}\ge-\dfrac{19}{2}\)

Dấu "=" xảy ra khi \(x=-\dfrac{3}{2}\)

\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)

11 tháng 7 2021

hiuhiu

6 tháng 8 2021

Ta có: A=2x2-3x+1=\(2\left(x^2-2.\dfrac{3}{4}+\dfrac{9}{16}\right)-\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)

Vì \(2\left(x-\dfrac{3}{4}\right)^2\ge0\)

 \(\Rightarrow A\ge-\dfrac{1}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

Vậy,Min \(A=\dfrac{-1}{8}\Leftrightarrow x=\dfrac{3}{4}\)

3 tháng 3 2019

  2 x 2 + 10 - 1 = 2 x 2 + 5 x - 1 / 2 B = 2 x 2 + 2 . 5 / 2   x   + 5 / 2 2 - 5 / 2 2 - 1 / 2 = 2 x + 5 / 2 2 - 25 / 4 - 2 / 4 = 2 x + 5 / 2 2 - 27 / 2 = 2 x + 5 / 2 2 - 27 / 2 V ì   x + 5 / 2 2   ≥   0   n ê n   2 x + 5 / 2 2   ≥   0   ⇒ 2   x + 5 / 2 2 - 27 / 2 ≥ - 27 / 2

Suy ra: B ≥ - 27/2 .

B= -27/2 khi và chỉ khi x + 5/2 = 0 suy ra x = -5/2

Vậy B = -27/2 là giá trị nhỏ nhất tại x = - 5/2