\(A=x^2-3x+5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

A = (x - 1,5)2 + 2,25

Vì (x - 1,5)2 ≥ 0 ∀x

GTNN A là 2,25 tại x = 1,5

29 tháng 11 2019

\(A=x^2-3x+5\)

\(A=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(A=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}\)

\(A=\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]+\frac{11}{4}\)

\(A=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}.\)

Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\) \(\forall x.\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\)

\(\Rightarrow A\ge\frac{11}{4}.\)

Dấu '' = '' xảy ra khi:

\(\left(x-\frac{3}{2}\right)^2=0\)

\(\Rightarrow x-\frac{3}{2}=0\)

\(\Rightarrow x=\frac{3}{2}.\)

Vậy \(MIN_A=\frac{11}{4}\) khi \(x=\frac{3}{2}.\)

Chúc bạn học tốt!

3 tháng 1 2020

Điều kiện \(x\ne\frac{-2}{3},x\in Z\)

M=\(\frac{2019x-2020}{3x+2}=\frac{673\left(3x+2\right)-3366}{3x+2}=673-\frac{3366}{3x+2}\)

Với \(\hept{\begin{cases}x\in Z\\3x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x>\frac{-2}{3}\end{cases}}\Rightarrow\frac{3366}{3x+2}>0\Rightarrow M>0\)

Với \(\hept{\begin{cases}x\in Z\\3x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x< \frac{-2}{3}\end{cases}}\)

\(\Rightarrow\)Phân số \(\frac{3366}{3x+2}\)nhỏ nhất\(\Leftrightarrow\)mẫu nguyên âm lớn nhất

                                                        \(\Leftrightarrow3x+2=-1\) 

                                                       \(\Leftrightarrow\)\(3x=-3\)

                                                      \(\Leftrightarrow x=-1\)(Thảo mãn điều kiện)

Với x=-1 thì M=4039

Vậy Min M=4039\(\Leftrightarrow x=-1\)

a) \(A=31-\sqrt{2x+7}\)

Ta có: \(-\sqrt{2x+7}\le0\forall x\)

\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)

Vậy MIN A = 31

10 tháng 8 2017

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

10 tháng 8 2017

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^

16 tháng 8 2017

a)A=|\(x+5\)|\(+2-x\)

=> \(x+5=0\)

\(2-x=0\)

=>\(x=-5\)

\(x=2\)

Gía trị nhỏ nhất của A là :

|-5+5|=2-2

=|0|=0

=>=0

Vậy .....................

17 tháng 8 2017

bn có thể giải dễ hiểu hơn một chút ko ?

a: \(A=\left|x+1\right|+5\ge5\forall x\)

Dấu '=' xảy ra khi x=-1

b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)

Dấu '=' xảy ra khi x=0

2 tháng 8 2016

A nhỏ nhất bằng 7 tại x=3/5