Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+5y^2-4xy-2y+2x+2010\)
\(=\left[x^2-2x\left(2y-1\right)+\left(2y-1\right)^2\right]+\left(y^2+2y+1\right)+2008\)
\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\)
\(minA=2008\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
\(A=\left[\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1\right]+\left(y^2+2y+1\right)+2008\\ A=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y+1\right)^2+2008\\ A=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\\ A_{min}=2008\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
\(A=\dfrac{2x^2-2x+3}{x^2-x+2}=\dfrac{2\left(x^2-x+2\right)-1}{x^2-x+2}=2-\dfrac{1}{x^2-x+2}=2-\dfrac{1}{x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{7}{4}}=2-\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\ge2-\dfrac{1}{\dfrac{7}{4}}=\dfrac{10}{7}\)-Dấu bằng xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)
A=\(\frac{x^2-2x+2010}{x^2}=1-2.\frac{1}{x}+\frac{2010}{x^2}=2010.\left(\frac{1}{2010}-2.\frac{1}{2010}.\frac{1}{x}+\frac{1}{x^2}\right)\)
=\(2010.\left(\frac{1}{2010^2}-2.\frac{1}{2010}.\frac{1}{x}+\frac{1}{x^2}+\frac{2009}{2010^2}\right)=2010\left(\frac{1}{2010^2}-2.\frac{1}{2010}.\frac{1}{x}+\frac{1}{x^2}\right)+\frac{2009}{2010}\)
\(=2010.\left(\frac{1}{2010}-\frac{1}{x}\right)^2+\frac{2009}{2010}\)
tự làm típ
a) đK: \(x\ne0;2\)
B = \(\dfrac{3x-4}{x\left(x-2\right)}.\dfrac{x\left(x-2\right)}{x^2-4-x^2}=\dfrac{3x-4}{-4}=\dfrac{4-3x}{4}\) \(\dfrac{x-4+2x}{x\left(x-2\right)}:\dfrac{\left(x-2\right)\left(x+2\right)-x^2}{x\left(x-2\right)}\)
= \(\dfrac{3x-4}{x\left(x-2\right)}.\dfrac{x\left(x-2\right)}{x^2-4-x^2}=\dfrac{4-3x}{4}\)
b) Thay x = -2 (TMDK) vào B, ta có:
\(B=\dfrac{4-3.\left(-2\right)}{4}=\dfrac{4+6}{4}=\dfrac{5}{2}\)
c) Để \(\left|B\right|-2x=5\)
<=> \(\left|\dfrac{4-3x}{4}\right|-2x=5\)
TH1: \(x\le\dfrac{4}{3}\)
<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{4-3x}{4}\)
PT <=> \(\dfrac{4-3x}{4}-2x=5\)
<=> \(\dfrac{4-3x-8x}{4}=5\)
<=> \(4-11x=20\)
<=> x = \(\dfrac{-16}{11}\) (Tm)
TH2: \(x>\dfrac{4}{3}\)
<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{3x-4}{4}\)
PT <=> \(\dfrac{3x-4}{4}-2x=5\)
<=> \(\dfrac{3x-4-8x}{4}=5\)
<=> \(-5x-4=20\)
<=> \(x=\dfrac{-24}{5}\left(l\right)\)
d) Xét (2-x)B = \(\dfrac{\left(2-x\right)\left(4-3x\right)}{4}\) = \(\dfrac{3x^2-10x+8}{4}\)
= \(\dfrac{3\left(x-\dfrac{5}{3}\right)^2-\dfrac{1}{3}}{4}\)
Mà \(3\left(x-\dfrac{5}{3}\right)^2\ge\) 0
=> (2-x)B \(\ge\dfrac{\dfrac{-1}{3}}{4}=\dfrac{-1}{12}\)
Dấu "=" <=> x = \(\dfrac{5}{3}\left(tm\right)\)
e) Số nguyên âm lớn nhất là -1
Để B = -1
<=> \(\dfrac{4-3x}{4}=-1\)
<=> 4 - 3x = -4
<=> \(x=\dfrac{8}{3}\left(tm\right)\)
g)
TH1: \(x\le\dfrac{4}{3}\)
<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{4-3x}{4}\)
BDT <=> \(\dfrac{4-3x}{4}< 2x-4\)
<=> \(4-3x< 8x-16\)
<=> \(x>\dfrac{20}{11}\left(l\right)\)
TH2: \(x>\dfrac{4}{3}\)
<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{3x-4}{4}\)
BDT <=> \(\dfrac{3x-4}{4}< 2x-4\)
<=> \(3x-4< 8x-16\)
<=> x > \(\dfrac{12}{5}\)
KHDK: \(x>\dfrac{12}{5}\)
A = \(\dfrac{x^2-2x+2020}{2021x^2}\)
= \(\dfrac{2020x^2-2.2020.x+2020^2}{2021.2020x^2}\)
\(=\dfrac{2019x^2}{2021.2020x^2}+\dfrac{x^2-2.2020.x+2020^2}{2021.2020x^2}\)
= \(\dfrac{2019}{2021.2020}+\dfrac{\left(x-2020\right)^2}{2021.2020x^2}\ge\dfrac{2019}{2021.2020}\)
Dấu "=" xảy ra <=> x - 2020 = 0
<=> x = 2020
Vậy minA = \(\dfrac{2019}{2021.2020}\)đạt được tại x = 2020
Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)
\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)
\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)
Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)
do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)
Dấu "=" xảy ra khi x-2y+1=0 và y+1=0
ta có:
y+1=0=>y=0-1=>y=-1
thay y=-1 và x-2y+1=0
=>x-2.(-1)+1=0
=>x+2+1=0
=>x+2=-1
=>x=-1-2
=>x=-3
vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1