K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

\(A=x^2+5y^2-4xy-2y+2x+2010\)

\(=\left[x^2-2x\left(2y-1\right)+\left(2y-1\right)^2\right]+\left(y^2+2y+1\right)+2008\)

\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\)

\(minA=2008\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

7 tháng 11 2021

\(A=\left[\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1\right]+\left(y^2+2y+1\right)+2008\\ A=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y+1\right)^2+2008\\ A=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\\ A_{min}=2008\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

6 tháng 4 2022

\(A=\dfrac{2x^2-2x+3}{x^2-x+2}=\dfrac{2\left(x^2-x+2\right)-1}{x^2-x+2}=2-\dfrac{1}{x^2-x+2}=2-\dfrac{1}{x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{7}{4}}=2-\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\ge2-\dfrac{1}{\dfrac{7}{4}}=\dfrac{10}{7}\)-Dấu bằng xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)

7 tháng 3 2016

A=\(\frac{x^2-2x+2010}{x^2}=1-2.\frac{1}{x}+\frac{2010}{x^2}=2010.\left(\frac{1}{2010}-2.\frac{1}{2010}.\frac{1}{x}+\frac{1}{x^2}\right)\)

=\(2010.\left(\frac{1}{2010^2}-2.\frac{1}{2010}.\frac{1}{x}+\frac{1}{x^2}+\frac{2009}{2010^2}\right)=2010\left(\frac{1}{2010^2}-2.\frac{1}{2010}.\frac{1}{x}+\frac{1}{x^2}\right)+\frac{2009}{2010}\)

\(=2010.\left(\frac{1}{2010}-\frac{1}{x}\right)^2+\frac{2009}{2010}\)

tự làm típ

21 tháng 10 2023

loading...  loading...  loading...  

20 tháng 6 2021

a) đK: \(x\ne0;2\)

B = \(\dfrac{3x-4}{x\left(x-2\right)}.\dfrac{x\left(x-2\right)}{x^2-4-x^2}=\dfrac{3x-4}{-4}=\dfrac{4-3x}{4}\) \(\dfrac{x-4+2x}{x\left(x-2\right)}:\dfrac{\left(x-2\right)\left(x+2\right)-x^2}{x\left(x-2\right)}\)

\(\dfrac{3x-4}{x\left(x-2\right)}.\dfrac{x\left(x-2\right)}{x^2-4-x^2}=\dfrac{4-3x}{4}\)

b) Thay x = -2 (TMDK) vào B, ta có:

\(B=\dfrac{4-3.\left(-2\right)}{4}=\dfrac{4+6}{4}=\dfrac{5}{2}\)

c) Để \(\left|B\right|-2x=5\)

<=> \(\left|\dfrac{4-3x}{4}\right|-2x=5\)

TH1: \(x\le\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{4-3x}{4}\)

PT <=> \(\dfrac{4-3x}{4}-2x=5\)

<=> \(\dfrac{4-3x-8x}{4}=5\)

<=> \(4-11x=20\)

<=> x = \(\dfrac{-16}{11}\) (Tm)

TH2: \(x>\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{3x-4}{4}\)

PT <=> \(\dfrac{3x-4}{4}-2x=5\)

<=> \(\dfrac{3x-4-8x}{4}=5\)

<=> \(-5x-4=20\)

<=> \(x=\dfrac{-24}{5}\left(l\right)\)

d) Xét (2-x)B = \(\dfrac{\left(2-x\right)\left(4-3x\right)}{4}\)  = \(\dfrac{3x^2-10x+8}{4}\)

\(\dfrac{3\left(x-\dfrac{5}{3}\right)^2-\dfrac{1}{3}}{4}\)

Mà \(3\left(x-\dfrac{5}{3}\right)^2\ge\) 0

=> (2-x)B \(\ge\dfrac{\dfrac{-1}{3}}{4}=\dfrac{-1}{12}\)

Dấu "=" <=> x = \(\dfrac{5}{3}\left(tm\right)\)

e) Số nguyên âm lớn nhất là -1

Để B = -1

<=> \(\dfrac{4-3x}{4}=-1\)

<=> 4 - 3x = -4
<=> \(x=\dfrac{8}{3}\left(tm\right)\)

g) 

TH1: \(x\le\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{4-3x}{4}\)

BDT <=> \(\dfrac{4-3x}{4}< 2x-4\)

<=> \(4-3x< 8x-16\)

<=> \(x>\dfrac{20}{11}\left(l\right)\)

TH2: \(x>\dfrac{4}{3}\)

<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{3x-4}{4}\)

BDT <=> \(\dfrac{3x-4}{4}< 2x-4\)

<=> \(3x-4< 8x-16\)

<=> x > \(\dfrac{12}{5}\)

KHDK: \(x>\dfrac{12}{5}\)

16 tháng 3 2023

A = \(\dfrac{x^2-2x+2020}{2021x^2}\)

\(\dfrac{2020x^2-2.2020.x+2020^2}{2021.2020x^2}\)

\(=\dfrac{2019x^2}{2021.2020x^2}+\dfrac{x^2-2.2020.x+2020^2}{2021.2020x^2}\)

\(\dfrac{2019}{2021.2020}+\dfrac{\left(x-2020\right)^2}{2021.2020x^2}\ge\dfrac{2019}{2021.2020}\)

Dấu "=" xảy ra <=> x - 2020 = 0

                       <=> x = 2020

Vậy minA = \(\dfrac{2019}{2021.2020}\)đạt được tại x = 2020

7 tháng 11 2021

Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

7 tháng 11 2021

ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)

\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)

\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)

Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)

do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)

Dấu "=" xảy ra khi x-2y+1=0 và y+1=0

ta có:

y+1=0=>y=0-1=>y=-1

thay y=-1 và x-2y+1=0

=>x-2.(-1)+1=0

=>x+2+1=0

=>x+2=-1

=>x=-1-2

=>x=-3

vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1