K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2020

\(A=x^2y^2+24xy+144+2x^2+16x+32+15\)

\(=\left(xy+12\right)^2+2\left(x+4\right)^2+15\ge15\)

Dấu = xảy ra \(\Leftrightarrow x=-4;y=3\)

12 tháng 1 2020

B=a2 +b2 +ab -3a -3b+2014

2B=2a2 +2b2 +2ab -6a -6b +4028

2B= (a+b)2 +(a-3)2 (b-3)2 + 4010

B=\(\frac{\left(a+b\right)^2}{2}+\frac{\left(a-3\right)^2}{2}+\frac{\left(b-3\right)^2}{2}+2005\) ≥2005

minB = 2005⇌\(\left[{}\begin{matrix}a=-b\\a=3\\b=3\end{matrix}\right.\)

12 tháng 1 2021

help me

12 tháng 1 2021

cíuuuuuuTvT

NV
5 tháng 7 2020

a/ \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y-5\right)^2\ge0\\\left(x-y+4\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)^2+\left(y-5\right)^2+\left(x-y+4\right)^2\ge0\)

\(A_{min}=0\) khi \(\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

b/ \(B=x^2y^2-6xy+9+x^2+4x+4-16\)

\(B=\left(xy-3\right)^2+\left(x+2\right)^2-16\ge-16\)

\(B_{min}=-16\) khi \(\left\{{}\begin{matrix}x=-2\\y=-\frac{3}{2}\end{matrix}\right.\)

c/ \(C=x^2+\frac{y^2}{4}+16+xy+8x+4y+\frac{59}{4}y^2-3y+2001\)

\(C=\left(x+\frac{y}{2}+4\right)^2+\frac{59}{4}\left(y-\frac{6}{59}\right)^2+\frac{118050}{59}\ge\frac{118050}{59}\)

\(C_{min}=\frac{118050}{59}\)

d/ \(D=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+36\)

\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)\)

\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)

\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]\ge2.3=6\)

\(D_{min}=6\)

e/ \(E=a^2+\frac{b^2}{4}+\frac{9}{4}+ab-3a-\frac{3b}{2}+\frac{3b^2}{4}-\frac{3b}{2}+2014-\frac{9}{4}\)

\(=\left(a+\frac{b}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(y-1\right)^2+2011\ge2011\)

\(E_{min}=2011\)

AH
Akai Haruma
Giáo viên
19 tháng 1 2021

Lời giải:

a) 

Áp dụng BĐT Bunhiacopxky:

\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)

\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)

Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$

b) 

Áp dụng BĐT Bunhiacopxky:

\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)

\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)

Vậy $B_{min}=-7; B_{\max}=3$