K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2020

a) Ta có: \(\left|1-2x\right|\ge0\forall x\)

\(\Rightarrow3\left|1-2x\right|\ge0\forall x\)

\(\Rightarrow3\left|1-2x\right|-5\ge-5\forall x\)

Dấu '=' xảy ra khi 1-2x=0

\(\Leftrightarrow2x=1\)

hay \(x=\dfrac{1}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức A=3|1-2x|-5 là -5 khi \(x=\dfrac{1}{2}\)

b) Ta có: \(2x^2\ge0\forall x\)

\(\Rightarrow2x^2+1\ge1\forall x\)

\(\Rightarrow\left(2x^2+1\right)^4\ge1\forall x\)

\(\Rightarrow\left(2x^2+1\right)^4-3\ge-2\forall x\)

Dấu '=' xảy ra khi x=0

Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(2x^2+1\right)^4-3\) là -2 khi x=0

14 tháng 12 2020

Cảm ơn bn nhìu!!!

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

11 tháng 12 2023

Câu 2:

a: 10km=10000m

10000m dây đồng có cân nặng là:

\(47:5\cdot10000=94000\left(g\right)\)

b: 300g=0,3kg=0,003 tạ

0,003 tạ nặng:

\(2,5:1\cdot0,003=\dfrac{3}{400}\left(kg\right)\)

Câu 1:

a:

\(\left|1-2x\right|>=0\forall x\)

=>\(3\left|1-2x\right|>=0\forall x\)

=>\(3\left|1-2x\right|-5>=-5\forall x\)

=>\(A>=-5\forall x\)

Dấu '=' xảy ra khi 1-2x=0

=>2x=1

=>x=1/2

Vậy: \(A_{Min}=-5\) khi x=1/2

b: \(2x^2>=0\forall x\)

=>\(2x^2+1>=1\forall x\)

=>\(\left(2x^2+1\right)^4>=1^4=1\forall x\)

=>\(\left(2x^2+1\right)^4-3>=1-3=-2\forall x\)

=>B>=-2\(\forall\)x

Dấu '=' xảy ra khi x=0

c: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)

\(\left(y+2\right)^2>=0\forall y\)

Do đó: \(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2>=0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+2=0\end{matrix}\right.\)

=>x=1/2 và y=-2

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0