K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

Hỏi đáp Toán

Câu 2

25 tháng 3 2018

     I3x-2I=4

=> 3x-2=4                             => -3x-2=4

         3x=4+2                                -3x=4+2

         3x=6                                    -3x=6

           x=6:3                                    x=6:(-3)

           x=2                                       x=-2

Tổng kết : x=-2

23 tháng 9 2020

a) B = | 2x - 3 | - 7

| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7

Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2

=> MinB = -7 <=> x = 3/2

C = | x - 1 | + | x - 3 |

= | x - 1 | + | -( x - 3 ) | 

= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2

Đẳng thức xảy ra khi ab ≥ 0

=> ( x - 1 )( 3 - x ) ≥ 0

=> 1 ≤ x ≤ 3

=> MinC = 2 <=> 1 ≤ x ≤ 3

b) M = 5 - | x - 1 |

- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxM = 5 <=> x = 1

N = 7 - | 2x - 1 |

- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxN = 7 <=> x = 1/2

8 tháng 11 2018

TH1: a+b+c  khác 0

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào B ta có:

\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)

TH2: a+b+c=0

=> c=-a-b

=>a=-b-c

=>b=-a-c

thay a,b,c vào B ta có:

\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)

\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)

p/s: th2 ko chắc nhá 

22 tháng 6 2019

Bài 1 tôi làm 1 phần hướng dẫn thôi nhé các phần còn lại bạn nhìn theo mà làm . Nếu bí thì nhắn tin cho tôi để tôi làm nốt

a) \(|3x-1|-|2x+3|=0\left(1\right)\)

Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)

       \(2x+3=0\Leftrightarrow x=\frac{-3}{2}\)

Lập bảng xét dấu :

3x-1 2x+3 -3/2 1/3 0 0 - - - + + +

+) Với \(x< \frac{-3}{2}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=-2x-3\end{cases}\left(2\right)}}\)

Thay (2) vào (1) ta được :

\(\left(1-3x\right)-\left(-2x-3\right)=0\)

\(1-3x+2x+3=0\)

\(-x+4=0\)

\(x=4\)( chọn )

+) Với \(\frac{-3}{2}\le x\le\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=2x+3\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :

\(\left(1-3x\right)-\left(2x+3\right)=0\)

\(1-3x-2x-3=0\)

\(-5x-2=0\)

\(x=\frac{-2}{5}\)( chọn )

+) Với \(x>\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1>0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|2x+3|=2x+3\end{cases}\left(4\right)}}\)

Thay (4) vào (1) ta được :

\(\left(3x-1\right)-\left(2x+3\right)=0\)

\(3x-1-2x-3=0\)

\(x-4=0\)

\(x=4\)( chọn )

Vậy \(x\in\left\{4;\frac{-2}{5}\right\}\)

22 tháng 6 2019

Bài 2:

a) Ta có: \(|2x+1|\ge0\forall x\)

\(\Rightarrow|2x+1|-7\ge0-7\forall x\)

Hay \(A\ge-7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\)

                         \(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Min A=-7 \(\Leftrightarrow x=\frac{-1}{2}\)

b) ko biết

c) Ta có: \(|1-x|+|x-2|\ge|1-x+x-2|\)

Hay \(C\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right).\left(x-2\right)\ge0\)

( giải các th nếu ko giải đc thì nhắn tin riêng nhé :)) )