Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
b)Ta có:\(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
\(B=\left|0,5x^2+x\right|^2-3\left|0,5x^2+x\right|+\dfrac{9}{4}-\dfrac{9}{4}\)
\(B=\left(\left|0,5x^2+x\right|-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
"="<=>\(\left|0,5x^2+x\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
g)Ta có:\(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Đặt \(x^2+x-2=t\)
\(\Rightarrow G=\left(t-4\right)\left(t+4\right)\)
\(G=t^2-16\ge-16\)
"="<=>\(x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
E=\(x^4-6x^3+9x^2+x^2-6x+9\)
\(=x^2\left(x^2-6x+9\right)+x^2-6x+9\\ =x^2\left(x-3\right)^2+\left(x-3\right)^2\ge0\forall x\\ E_{min}=0\Leftrightarrow x=3\)
a) Ta có: \(5x\left(x+1\right)-5\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[5x-5\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(5x-5x+10\right)=0\)
\(\Leftrightarrow10\left(x+1\right)=0\)
mà \(10\ne0\)
nên x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: \(\left(4x+1\right)\left(x-2\right)-\left(2x-3\right)=4\)
\(\Leftrightarrow4x^2-8x+x-2-2x+3-4=0\)
\(\Leftrightarrow4x^2-9x-3=0\)
\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{9}{4}+\frac{81}{16}-\frac{129}{16}=0\)
\(\Leftrightarrow\left(2x-\frac{9}{4}\right)^2=\frac{129}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{9}{4}=\frac{\sqrt{129}}{4}\\2x-\frac{9}{4}=-\frac{\sqrt{129}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{9+\sqrt{129}}{4}\\2x=\frac{9-\sqrt{129}}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9+\sqrt{129}}{8}\\x=\frac{9-\sqrt{129}}{8}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{9+\sqrt{129}}{8};\frac{9-\sqrt{129}}{8}\right\}\)
c) Ta có: \(2x^3-18x=0\)
\(\Leftrightarrow2x\left(x^2-9\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)
mà \(2\ne0\)
nên \(\left[{}\begin{matrix}x=0\\x+3=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=3\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-3;3\right\}\)
d) Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)
\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)
\(\Leftrightarrow-13x-2=11\)
\(\Leftrightarrow-13x=13\)
hay x=-1
Vậy: x=-1
e) Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3+8\right)=3-3x^2\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8-3+3x^2=0\)
\(\Leftrightarrow3x-12=0\)
\(\Leftrightarrow3x=12\)
hay x=4
Vậy: x=4
f) Ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-1\)
\(\Leftrightarrow6x^2-\left(6x^2-4x+15x-10\right)+1=0\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10+1=0\)
\(\Leftrightarrow-11x+11=0\)
\(\Leftrightarrow-11x=-11\)
hay x=1
Vậy: x=1
1. A = x2 - 6x + 11 = x2 - 2.x.3 + 9 + 2 = (x - 3)2 + 2 \(\ge\) 2
Vậy: GTNN của A là 2
2.x2 - 4x + 3 = x2 - 2.x.2 + 4 - 1 = (x - 2)2 - 1 \(\ge\) -1
Vậy: GTNN của B là -1
3. B = x2 - x - 6 = x2 - 2.x.\(\frac{1}{2}\) + \(\frac{1}{4}\) - \(\frac{25}{4}\) = (x - \(\frac{1}{2}\))2 - \(\frac{25}{4}\) \(\ge\) - \(\frac{25}{4}\)
Vậy: GTNN của B là \(\frac{-25}{4}\)
4.x2 + 5x + 4 = x2 + 2.x.\(\frac{5}{2}\) + \(\frac{25}{4}\) - \(\frac{9}{4}\) = (x - \(\frac{5}{2}\))2 - \(\frac{9}{4}\) \(\ge\) \(\frac{9}{4}\)
Vậy.......
5. E= 2x2 + 10x - 1 = 2(x2 + 5x - \(\frac{1}{2}\) ) = 2 (x2 + 2.x.\(\frac{5}{2}\) +\(\frac{25}{4}\)- \(\frac{27}{4}\))
= 2(x + \(\frac{5}{2}\))2 - \(\frac{27}{2}\) \(\ge\) -\(\frac{27}{2}\)
Vậy.......
6. G = 5x - x2 = -(x2 - 5x + \(\frac{25}{4}\) ) + \(\frac{25}{4}\) = - (x - \(\frac{5}{2}\))2 + \(\frac{25}{4}\) \(\le\frac{25}{4}\)
Vậy.........