\(B=\frac{42-y}{y-15}\)có giá trị nguyên nhỏ nhất
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

\(B=\frac{42-y}{y-15}=\frac{15+27-y}{y-15}=\frac{27-\left(y-15\right)}{y-15}=\frac{27}{y-15}-1\)

Đặt \(D=\frac{27}{y-15}\)

Ta có: \(B_{min}\Leftrightarrow D_{min}\)

ĐK: \(y\ne15\),xét 2 TH:

TH1:Nếu y<15 thì y-15<0,mà 27>0=>D<0

TH2:Nếu y>15 thì y-15>0;mà 27>0=>D>0

Như vậy,muốn \(D_{min}\) ta phải chọn y sao cho D<0,tức là chọn y<15

Khi đó \(D_{min}\) khi số đối của \(D_{max}\Leftrightarrow\left(\frac{27}{15-y}\right)_{max}\Leftrightarrow\left(15-y\right)_{min}\) (do 27 là hằng số dương)

Có 15-y>0,mà \(x\in Z\) nên \(\left(15-y\right)_{min}\Leftrightarrow15-y=1\Leftrightarrow y=14\) (thỏa mãn ĐK)

Vậy \(B_{min}=\frac{42-14}{14-14}=-28\) tại y=14

18 tháng 4 2018

B=42-y/y-15=27-(y-15)/y-15=27/(y-15)-1

để B có giá trị nhỏ nhất =>27/y-15 - 1 có GTNN=>27/y-15 có GTNN

=>y-15=-1 => y=14

=> B có GTNN = -28 <=>y=14

13 tháng 1 2020

                                                                 Bài giải

a, Ta có : \(A=\left|x-1\right|+\left|x-2\right|\)

* Với x < 2 thì :

\(A=-\left(x-1\right)-\left(x-2\right)\)

\(A=-x+1-x+2\)

\(A=-2x+3\)

* Với x > 2 thì :

\(A=x-1+x-2\)

\(A=2x-3\)

b, Ta có :

\(B=\frac{42-y}{y-15}=\frac{15-y+27}{y-15}=\frac{15-y}{y-15}+\frac{27}{y-15}=-1+\frac{27}{y-15}\)

B đạt GT nguyên NN khi \(\frac{27}{y-15}\) đạt GT nguyên NN 

\(\Rightarrow\text{ }y\ne15\)

Ta xét 2 trường hợp :

* Với y < 15 => \(\frac{27}{y-15}< 0\text{ }\Rightarrow\text{ }B< 0\)

* Với y > 15 => \(\frac{27}{y-15}>0\text{ }\Rightarrow\text{ }B>0\)

Mà ta đang tìm GT nguyên NN của \(\frac{27}{y-15}\) \(\Rightarrow\) y - 15 đạt GTLN và y < 15 , x nguyên => y = 14

=> GTNN của \(\frac{27}{y-15}=\frac{27}{-1}=-27\)

\(\Rightarrow\)GT nguyên NN của B = - 1 + ( - 27 ) = - 28 khi x = - 14

2 tháng 5 2016

xét  B=(42-y)(y-15)<0<=>1.                  (42-y)<0

                                                       và (y-15)>0<=>y>42 và y>15

                                                     =>y>42

                                      2.                   (42-y)>0

                                                        và (y-15)<0         

                                                           =>y<42 và y<15

                                                             =>y<15

xét B> hoạc =0 cmtt 

20 tháng 12 2016

Để biểu thức trên nguyên thì \(x^4y^4\) chia hết cho 15, nghĩa là phải có một số chia hết cho 3 và một số chia hết cho 5.

Ngoài ra, nếu ĐK trên thoả mãn là đủ, vậy để biểu thức có giá trị nhỏ nhất mình cho \(x=3,y=5\).

Đáp số là \(15^3\)

20 tháng 12 2016

tìm cả x , cả y nữa mà bn