K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

x = 2;5/2;11;41/2 

7 tháng 5 2018

\(A=10x^2-7x-5=\left(10x^2-15x\right)+8x-12+7=5x\left(2x-3\right)+4\left(2x-3\right)+7\)

\(A⋮B\Leftrightarrow7⋮2x+3\)

Rồi xét từng ước và tìm x 

24 tháng 11 2015

a) \(x^3-5x^2+8x-4=\left(x^3-x^2\right)-4\left(x^2-x\right)+4\left(x-1\right)=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

                                             \(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

b) \(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\) chia hết cho 2x-3  => 7 chia hết cho 2x -3 

=> 2x -3 thuộc U(7) ={-7;-1;1;7}

+2x-3 =-7 => x =-2

+2x-3 =-1 => x =1

+2x-3 =1 => x =2

+2x -3 =7 => x =5

25 tháng 4 2021
Bài giải đây nha, có thể trình bày theo ý bạn

Bài tập Tất cả

30 tháng 1 2019

a) \(x^3-5x^2+8x-4\)

\(=x^3-2x^2-3x^2+6x+2x-4\)

\(=x^2\left(x-2\right)-3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-3x+2\right)\)

\(=\left(x-2\right)\left(x^2-x-2x+2\right)\)

\(=\left(x-2\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)

\(=\left(x-2\right)\left(x-1\right)\left(x-2\right)\)

30 tháng 1 2019

b) \(A=10x^2-15x+8x-12+7\)

\(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\)

\(A=\left(2x-3\right)\left(5x+4\right)+7\)

Dễ thấy \(\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)=B\)

Vậy để \(A⋮B\)thì \(7⋮\left(2x-3\right)\)

\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x\in\left\{2;1;5;-2\right\}\)

Vậy.......

16 tháng 7 2016

Ta xét : \(\frac{A}{B}=\frac{10x^2-7x-5}{2x-3}=\frac{\left(5x+4\right)\left(2x-3\right)+7}{2x-3}=5x+4+\frac{7}{2x-3}\)

Để A chia hết cho B thì 7 chia hết cho (2x-3)
Suy ra 2x-3 thuộc ước của 7 (chú ý điều kiện x khác 3/2)

Liệt kê ra là xong bạn nhé ^^

24 tháng 12 2018

\(a,x^2-3x=0\)

\(\Rightarrow x\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

- Thay \(x=0\) vào biểu thức A, ta được :

\(\frac{0-5}{0-4}=\frac{-5}{-4}=\frac{5}{4}\)

- Thay \(x=3\) vào biểu thức A, ta được :  

\(\frac{3-5}{3-4}=\frac{-2}{-1}=2\)

24 tháng 12 2018

\(b,B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)

\(=\frac{x+5}{2x}+\frac{x-6}{x-5}+\frac{-\left(2x^2-2x-50\right)}{2x\left(x-5\right)}\)

\(=\frac{\left(x+5\right)\left(x-5\right)}{2x\left(x-5\right)}+\frac{2x\left(x-6\right)}{2x\left(x-5\right)}+\frac{-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)

18 tháng 8 2020

a) Ta có : \(A=\frac{3x+5}{x+4}=\frac{3x+12-7}{x+4}=\frac{3\left(x+4\right)-7}{x+4}=3-\frac{7}{x+4}\)

Vì \(3\inℤ\Rightarrow\frac{-7}{x+4}\inℤ\Rightarrow-7⋮x+4\Rightarrow x+4\inƯ\left(-7\right)\)

=> \(x+4\in\left\{1;-1;-7;7\right\}\Rightarrow x\in\left\{-3;-5;-11;7\right\}\)

b) Ta có B = \(\frac{10x^2-7x-5}{2x-3}=\frac{10x^2-15x+8x-12+7}{2x-3}=\frac{5x\left(2x-3\right)+4\left(2x-3\right)+7}{2x-3}\)

\(=\frac{\left(5x+4\right)\left(2x-3\right)+7}{2x-3}=5x+4+\frac{7}{2x-3}\)

Vì \(\hept{\begin{cases}5x\inℤ\\4\inℤ\end{cases}\Rightarrow\frac{7}{2x-3}\inℤ\Rightarrow7⋮2x-3\Rightarrow2x-3\inƯ\left(7\right)\Rightarrow2x-3\in\left\{1;7;-1;-7\right\}}\)

=> \(x\in\left\{2;5;1;-2\right\}\)

10 tháng 4 2020

a) A= \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\)

\(ĐK:3x^2-7x+2\ne0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ne\frac{1}{3}\\x\ne2\end{cases}\left(^∗\right)}\)

=> 3x+ 5x + 2 =0

<=> 3x2 + 3x + 2x +2 = 0

<=> 3x .( x + 1 ) + 2 .( x + 1 ) =0

<=> (  x + 1 )(3x + 2 ) =0

<=> \(\orbr{\begin{cases}x+1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{-2}{3}\left(t/m\left(^∗\right)\right)\end{cases}}}\)

Vậy x = -2/3 

b) \(B=\frac{2x^2+10x+12}{x^3-4x}=0\left(ĐK:x\ne0;x^2\ne4\Leftrightarrow x\ne0;x\ne\pm2\right)\)

<=> 2x2+ 10x + 12 = 0

<=> x2 + 5x+ 6 =0

<=> ( x + 2 ) ( x + 3 ) =0\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=-3\left(t/m\right)\end{cases}}\) 

Vậy x = -3 

c)\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}=0\)                         \(ĐK:x^3+2x-5\ne0\left(^∗\right)\)

<=> x3 + x2 -x -1 =0

<=> ( x - 1 )(x2 + 2x + 1 ) 

<=> ( x-1 ) (x+1)2 = 0

<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(t/m\left(^∗\right)\right)\\x=-1\left(t/m\left(^∗\right)\right)\end{cases}}}\)

Vậy x = { 1 ; -1 }

11 tháng 4 2020

a) A = \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\) (ĐKXĐ: x khác 1/3, x khác 2)

<=> 3x^2 + 5x - 2 = 0

<=> (3x - 1)(x + 2) = 0

<=> 3x - 1 = 0 hoặc x + 2 = 0

<=> 3x = 1 hoặc x = -2

<=> x = 1/3 (ktm) hoặc x = -2 (tm)

=> x = -2

b) B = \(\frac{2x^2+10x+12}{x^3-4x}=0\) (ĐKXĐ: x khác 0, x khác +-2)

<=> \(\frac{2\left(x^2+5x+6\right)}{x\left(x^2-4\right)}=0\)

<=> \(\frac{2\left(x+2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{2\left(x+3\right)}{x\left(x-2\right)}=0\)

<=> 2(x + 3) = 0

<=> x + 3 = 0

<=> x = -3

c) C = \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) (ĐKXĐ: x khác x^3 + 2x - 5)

<=> \(\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)

<=> \(\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}=0\)

<=> \(\frac{\left(x+1\right)\left(x-1\right)\left(x+1\right)}{x^3+2x-5}=0\)

<=> (x + 1)(x - 1) = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

9 tháng 1 2020

Đk : \(x\ne5;x\ne0;x\ne4\)

a) ta có:

\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTM\right)\\x=3\left(TM\right)\end{cases}}\)

Thay x= 3 vào biểu thức A , ta được :

\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)

vậy ..............

b) \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)

\(B=\frac{x+5}{2x}+\frac{6-x}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)

\(B=\frac{\left(x-5\right)\left(x+5\right)+2x\left(6-x\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(B=\frac{x^2-25+12x-2x^2-2x^2+2x+50}{2x\left(x-5\right)}\)

\(B=\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)

c) Ta có :

\(P=A.B\)

\(P=\frac{x-5}{x-4}.\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)

\(P=\frac{-3x^2+25+14x}{2x\left(x-4\right)}\)

\(P=\frac{-3x^2+25+14x}{2x^2-8x}\)

24 tháng 4 2017

Giải bài 6 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

GV
24 tháng 4 2017

Biến đổi M về dạng \(M=f\left(x\right)+\dfrac{n}{2x-3}\) như sau:

Cách 1: chia đa thức \(10x^2-7x-5\) cho \(2x-3\) ta được thương là \(5x+4\) dư là 7. Vậy:

\(M=5x+4+\dfrac{7}{2x-3}\)

Cách 2: Biến đổi M như sau:

\(M=\dfrac{10x^2-7x-5}{2x-3}=\dfrac{10x^2-15x+8x-12+7}{2x-3}\)

\(=\dfrac{5x\left(2x-3\right)+4\left(2x-3\right)+7}{2x-3}\)

\(=5x+4+\dfrac{7}{2x-3}\)

Sau đó các bước tiếp theo làm như bạn Nhật Linh.