K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

Đáp án B

Ta có y ' = 4 x 3 - 4 m 2 + 1 x , ∀ x ∈ ℝ . Phương trình y ' = 0 ⇔ [ x = 0 x = m 2 + 1 . 

Hệ số a > 0 suy ra giá trị cực tiểu của hàm số là y C T = 2 - m 2 + 1 4 ≤ 1  

Dấu “=” xảy ra khi và chỉ khi m 2 = 0 ⇒ m = 0 .

11 tháng 7 2019

y ' = 4 x 3 - 4 m 2 + 1 x y ' = 0 ⇔ x = 0 x = ± m 2 + 1

Dễ thấy hàm số đã cho có 3 điểm cực trị với mọi m.

Với x C T = ± m 2 + 1 ⇒  giá trị cực tiểu y C T = - m 2 + 1 + 1

Ta có  m 2 + 1 2 ≥ 1 ⇒ y C T ≤ 0 m a x y C T = 0 ⇔ m 2 + 1 = 1 ⇔ m = 0

Đáp án A

27 tháng 2 2016

giả sử :  \(\frac{mx+m}{\left(m+1\right)x-m+2}>0\)\(,\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\frac{m.0+m}{\left(m+1\right).0-m+2}>0\)    \(\Rightarrow\frac{m}{2-m}>0\)

                               \(\Rightarrow0\)\(<\)\(m<\)\(2\)

ngược lại \(0<\)\(m<2\) thì:

\(mx+m>0,\text{∀}x\in\left[0;2\right]\)

\(\left(m+1\right)x\ge0>m-2,\)\(\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\left(m+1\right)x-m+2>0,\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\frac{mx+m}{\left(m+1\right)x-m+2}>0,\text{∀}x\in\left[0;2\right]\)

vậy:  \(0\)\(<\)\(m<\)\(2\) là kết quả cần tìm

26 tháng 4 2019

Chọn C

18 tháng 10 2018

Chọn C

24 tháng 2 2016

*x2+bx+c=0

\(\Delta=b^2-4c=b^2-4.\left(2b-4\right)=b^2-8b+16=\left(b-4\right)^2\)=>\(\sqrt{\Delta}=\left|b-4\right|\)

Với (b-4)2=0 =>b=4 =>c=4

PT có 1 nghiệm kép: \(x_1=x_2=-2\)

Với\(\Delta=\) (b-4)2>0,PT có 2 nghiệm pb: \(x_1=\frac{-b+\left|b-4\right|}{2};x_2=\frac{-b-\left|b-4\right|}{2}\)

Với b>4 thì: \(x_1=-2;x_2=\frac{-2b+4}{2}=-b+2\)

Với b<0 thì: x1=-b+2 ; x2=-2

Vậy khi c=2b-4 và b tùy ý thì PT: x2+bx+c=0 luôn có 1 nghiệm nguyên là -2

14 tháng 5 2018

30 tháng 10 2018

Đáp án A

Phương pháp giải:

Tìm tọa độ điểm cực trị của đồ thị hàm số trùng phương và tính diện tích tam giác

Lời giải: TXĐ : D = R

Ta có R

Phương trình 

Hàm số có 3 điểm cực trị ó (*) có 2 nghiệm phân biệt khác 

Khi đó 

Gọi ;  là ba điểm cực trị. Tam giác ABC cân tại A.

Trung điểm  H của BC là

 Diện tích tam giác ABC là  

Mà suy ra 

Vậy Smax = 1 Dấu bằng xảy ra khi và chỉ khi m = 0

4 tháng 12 2017

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu