K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. Thay x = 1 vào đa thức ta có: 

\(1^2-4.1+4=1\)

Thay x = 2 vào đa thức ta có

\(2^2-4.2+4=0\)

Thay x = 3 vào đa thức ta có: 

\(3^2-4.3+4=1\)

Thay x = -1 vào đa thức ta có: 

\(\left(-1\right)^2-4.\left(-1\right)+4=9\)

b. Trong các số trên 2 là nghiệm của đa thức M(x)

7 tháng 5 2023

a, M(\(x\)) = \(x^2\) - 4\(x\) + 4 

M(1) = 12 - 4.1 + 4 = 1

M(2) = 22 - 4.2 + 4 = 0

M(3) = 32 - 4.3 + 4 = 1

M(-1) = (-1)2 - 4.(-1) + 4 = 9

b, Trong các số 1; 2; 3 và -1  thì 2 là nghiệm của M(\(x\)) vì M(2) = 0

18 tháng 4 2021

a/ \(M\left(x\right)=-x^2+5\)

Có \(-x^2\le0\forall x\)

=> \(M\left(x\right)\le5\forall x\)

=> M(x) không có nghiệm.

2/

Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có

\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)

\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)

\(\Leftrightarrow a=2\)

Vậy...

a: M(x)=x^2-16x+64=(x-8)^2

Đặt M(x)=0

=>x-8=0

=>x=8

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

25 tháng 6 2023

a) Theo đề f(x) nhận -2 là nghiệm lấy -2 thay vào x ta có:

\(\left(-2\right)^2-2m+2=0\)

\(\Rightarrow4-2m+2=0\)

\(\Rightarrow6-2m=0\)

\(\Rightarrow2m=6\)

\(\Rightarrow m=3\)

b) Tìm được m ta có: \(f\left(x\right)=x^2+3x+2\)

\(\Rightarrow x^2+3x+2=0\)

\(\Rightarrow x^2+2x+x+2=0\)

\(\Rightarrow x\left(x+2\right)+\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của f(x) là: \(S=\left\{-2;-1\right\}\)