Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4-x2+3x
=-x2+3x+4
=\(-x^2+3x-\)\(\frac{9}{4}+\frac{25}{4}\)
=\(-\left(x^2-3x+\frac{9}{4}\right)+\frac{25}{4}\)
\(=\frac{25}{4}-\left(x-\frac{3}{2}\right)^2\)
\(\Rightarrow-\left(x-\frac{3}{2}\right)^2\le0\) voi moi x
\(\Rightarrow-\left(x-\frac{3}{2}\right)^2\le\frac{25}{4}\)
Vay GTLN la : \(\frac{25}{4}\)
Dau "=" xay ra khi : \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
tìm gí trị nhỏ nhất
Ta có \(A=x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)\(\Rightarrow A\ge\frac{3}{4}\)
Dấu"=" xảy ra khi và chỉ khi \(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là \(\frac{3}{4}\) tại \(x=-\frac{1}{2}\)
Ta có \(B=4x^2-3x+2=4x^2-2.2x.\frac{3}{4}+\frac{9}{16}+\frac{23}{16}=\left(2x-\frac{3}{4}\right)^2+\frac{23}{16}\)
Vì \(\left(2x-\frac{3}{4}\right)^2\ge0\Rightarrow\left(2x-\frac{3}{4}\right)^2+\frac{23}{16}\ge\frac{23}{16}\Rightarrow B\ge\frac{23}{16}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(2x-\frac{3}{4}\right)^2=0\Leftrightarrow2x-\frac{3}{4}=0\Leftrightarrow2x=\frac{3}{4}\Leftrightarrow x=\frac{3}{8}\)
Vậy giá trị nhhor nhất của B là \(\frac{23}{16}\)tại \(x=\frac{3}{8}\)
Ta có \(C=3x^2+x-1=3\left(x^2+\frac{1}{3}x-\frac{1}{3}\right)=3\left(x^2+2.\frac{1}{6}x+\frac{1}{36}-\frac{13}{36}\right)=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\)
Vì \(\left(x+\frac{1}{6}\right)^2\ge0\Leftrightarrow3\left(x+\frac{1}{6}\right)^2\ge0\Leftrightarrow3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge-\frac{13}{12}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\frac{1}{6}=0\Leftrightarrow x=-\frac{1}{6}\)
Vậy giá trị nhỏ nhất của C là \(-\frac{13}{12}\)tại \(x=-\frac{1}{6}\)
tìm giá trị lớn nhất
Ta có \(A=x+1-x^2=-\left(x^2-x-1\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x+\frac{1}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy giá trị lớn nhất của A là \(\frac{5}{4}\)tại \(x=-\frac{1}{2}\)
Ta có : \(A=1-x^2+x\)
\(\Rightarrow A=-\left(x^2-x-1\right)\)
\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}-\frac{5}{4}\right)\)
\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}\)
\(\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên : \(A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\forall x\)
Vậy Amax = \(\frac{5}{4}\) khi \(x=\frac{1}{2}\)
Ta có : \(B=5x-x^2\)
\(=-\left(x^2-5x\right)\)
\(=-\left(x^2-5x+\frac{25}{4}-\frac{25}{4}\right)\)
\(=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}\)
B\(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì \(-\left(x-\frac{5}{2}\right)^2\) \(\text{≤ }0∀x \)
Nên : B \(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\) \(\text{≤ }\frac{25}{4}∀x\)
Vậy \(B_{min}=\frac{25}{4}\) khi \(x=\frac{5}{2}\)
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi
1;\(x^3+3x=3x^2+1\)
\(\Rightarrow x^3+3x-3x^2-1=0\)
\(\Rightarrow x^3-3x^2+3x-1=0\)
\(\Rightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x=1\)
2;\(x^2-3x\)
\(=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\left(-\frac{9}{4}\right)\ge-\frac{9}{4}\left[\left(x-\frac{3}{2}\right)^2\ge0\right]\)
Vậy Min \(x^2-3x=-\frac{9}{4}< =>x=\frac{3}{2}\)
Ta có: A = x2 - 5x + 1 = (x2 - 5x + 25/4) - 21/4 = (x - 5/2)2 - 21/4
Ta luôn có: (x - 5/2)2 \(\ge\)0 \(\forall\)x
=> (x - 5/2)2 - 21/4 \(\ge\)-21/4 \(\forall\)x
Dấu "=" xảy ra <=> x -5/2 = 0 <=> x = 5/2
Vậy Min A = -21/4 tại x = 5/2
Ta có: B = -x + 3x + 1 = -(x - 3x + 9/4) + 13/4 = -(x - 3/2)2 + 13/4
Ta luôn có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 13/4 \(\le\)13/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max B = 13/4 tại x = 3/2
(xem lại đề)
A= - ( x^2 - 3x -1)
= - ( x^2 - 3/2x - 3/2x +9/4 - 13/4)
= - [x( x- 3/2) - 3/2 ( x-3/2 ) -13/4]
= - [ ( x-3/2)2 -13/4]
= - (x-3/2)2 +13/4
Mà -(x-3/2)2 < hoặc = 0 nên A< hoặc = 13/4
Vậy A đạt GTLN=13/4 Khi và chỉ khi x= 3/2
Câu b bạn cũng tách ra và làm tương tự vậy thôi nha.
Nếu bạn cứ làm theo phương pháp đó thì mình đảm bảo với bạn mấy bài kiểu đó làm thế nào cũng ra