Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+4x+10=\left(2x+1\right)^2+9\)
Ma \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+9\ge9\)
\(\Rightarrow\frac{3}{4x^2+4x+10}\le\frac{3}{9}=\frac{1}{3}\)
(dau "=" xay ra khi x=\(\frac{-1}{2}\)
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
a) \(A=x^2-6x+11\)
\(\Rightarrow A=x^2-6x+9+2\)
\(\Rightarrow A=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = 3
Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)
b) \(B=2x^2+10x-1\)
\(\Rightarrow B=2\left(x^2+5\right)-1\)
\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)
\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)
Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)
\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)
Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)
c) \(C=5x-x^2\)
\(\Rightarrow C=-\left(x^2-5x\right)\)
\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)
Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)
Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
\(M=\frac{3}{x^2-4x+5}\)
\(=\frac{3}{x^2-4x+4+1}\)
\(=\frac{3}{\left(x-2\right)^2+1}\le3\)
\(Max_M=3\Leftrightarrow x=2\)
a)
2x-3=0 => x=3/2
b)
2x^2 +1 =0 => vô nghiệm
c) x^2 -25 =0 => x=5 loiaj
x=-5 nhân
d)
x^2 -25 =0 => x=5 loại
x=-5 loại
a) \(A=2x^2+2x+3\)
\(A=2\left(x^2+x+\frac{3}{2}\right)\)
\(A=2\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
b) Biến đổi mẫu thức :
\(3x^2+4x+15\)
\(=3\left(x^2+\frac{4}{3}x+5\right)\)
\(=3\left[x^2+2\cdot x\cdot\frac{2}{3}+\left(\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left[\left(x+\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}\)
\(B=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\ge\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{2}{3}=0\Leftrightarrow x=\frac{-2}{3}\)
c) \(C=-x^2+2x-2\)
\(C=-\left(x^2-2x+2\right)\)
\(C=-\left(x^2-2\cdot x\cdot1+1^2+1\right)\)
\(C=-\left[\left(x-1\right)^2+1\right]\)
\(C=-1-\left(x-1\right)^2\le-1\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Biến đổi mẫu thức tương tự câu b)
\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\cdot\left(\frac{x}{\left|x\right|}-\frac{y}{\left|y\right|}\right)\)
TH1: \(x,y>0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+1\cdot\left(1-1\right)=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+\left(-1\right)\cdot\left(1-1\right)=1\)
TH2: \(x,y< 0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1+1\cdot\left[-1-\left(-1\right)\right]=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1\)
TH3: \(x>0;y< 0\): \(P=\frac{xy}{-xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{-y}\right)=-1+1\cdot\left(1+1\right)=1\)
TH4: \(x< 0;y>0\): \(P=\frac{xy}{-xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{y}\right)=-1+\left(-1\right)\cdot\left(-1-1\right)=1\)
Nói chung với mọi x, y thì P = 1
Bài 5 : a, -11-2x-x2=-(x2+2x)-11
=-(x2+2x+1)-11+1
=-(x+1)2-10\(\le-10\)
Dấu = xảy ra khi : -(x+1)2=0
\(\Leftrightarrow\)x=-1
b,-x2-5x=-(x2+5x)=-(x2+2.\(\frac{5}{2}\)x+\(\frac{25}{4}\))+\(\frac{25}{4}\)
=-(x+\(\frac{5}{2}\))2+\(\frac{25}{4}\le\frac{25}{4}\)
Dấu = xảy ra khi : -(x+\(\frac{5}{2}\))2=0
\(\Leftrightarrow\)x=\(-\frac{5}{2}\)
c, 3x-x2-7
=-(x2-3x)-7
=-(x2-2.\(\frac{3}{2}\)x+\(\frac{9}{4}\))-7+\(\frac{9}{4}\)
=-(x-\(\frac{3}{2}\))2-\(\frac{19}{4}\le-\frac{19}{4}\)
Dấu = xảy ra khi : -(x-\(\frac{3}{2}\))2=0
\(\Leftrightarrow x=\frac{3}{2}\)
a) \(M=-2x^2+x-5\)
\(-2M=4x^2-2x+10\)
\(-2M=\left(4x^2-2x+\frac{1}{4}\right)+\frac{39}{4}\)
\(-2M=\left(2x-\frac{1}{2}\right)^2+\frac{39}{4}\)
Mà \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-2M\ge\frac{39}{4}\)
\(\Leftrightarrow M\le\frac{39}{8}\)
Dấu "=" xảy ra khi : \(2x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
Vậy \(M_{Max}=\frac{39}{8}\Leftrightarrow x=\frac{1}{4}\)
b) \(K=10x-23-x^2\)
\(-K=x^2-10x+23\)
\(-K=\left(x^2-10x+25\right)-2\)
\(-K=\left(x-5\right)^2-2\)
Mà \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow-K\ge-2\)
\(\Leftrightarrow K\le2\)
Dấu "=" xảy ra khi : \(x-5=0\Leftrightarrow x=5\)
Vậy \(K_{Max}=2\Leftrightarrow x=5\)