Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Có: /x2 - 4/ >= 0
Vx
=>/x2 - 4/ - 2014 >= -2014 Vx
Dấu = xảy ra <=> x2 - 4 = 0
<=> x2 = 4
<=> x = 2
=> Amin =-2014 <=> x = 2
- Có -x2 <= 0
Vx
=> -x2 + 1 <= 1 Vx
Dấu = xảy ra <=> -x2 = 0
<=> x = 0
=>Amax = 1 <=> x = 0
- Có (5x+2)2 >= 0
Vx
5 - (5x+2)2 <= 5
Dấu = xảy ra <=> 5x+2 = 0
<=> 5x = -2
<=> x = -2/5
=> Bmax = 5 <=> x = -2/5
- Có-/x^2+7/ <= 0
Vx
=> 2015-/x^2+7/ <= 2015 Vx
Dấu = xảy ra <=> x^2+7 = 0
<=> x2 = -7
<=> x = \(\sqrt{-7}\)
=> C max = 2015 <=> x = \(\sqrt{-7}\)
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
a) ko có a, b thỏa mãn
b) Giá trị lớn nhất của A = \(\frac{7}{6}\)
c) 16
d) x = \(\frac{14}{3}\)
e) x=-1
g) n= 7
h)
j) x=1
k) n=11
\(B=2-\left|x+\frac{5}{6}\right|\)
\(\Leftrightarrow\left|x+\frac{5}{6}\right|=0\)
\(\Leftrightarrow x+\frac{5}{6}=0\)
\("="\Leftrightarrow x=-\frac{5}{6}\Rightarrow x=2\)
a) C = 5 - /x + 1/
Cho x = -1 ta luôn luôn có: 5 - /-1 + 1/ = 5
=> Với x là một số nguyên không âm ta luôn có: 5 - a = k (với a là giá trị của trị tuyệt đối của x + 1, k là giá trị lớn nhất của biểu thức).
=> Khi năm (5) trừ (-) cho một số để có giá trị lớn nhất thì luôn luôn kết quả (k) đều bằng 5.
bài kia tương tự nha !