
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Trần Việt Hoàng !!! Em xem lại đề nhé! Cô nghĩ là M= - x^2+2xy-4y^2+2x+10y-8

\(6M=-6x^2+12xy-24y^2+12x+60y-48\)
\(=(-4x^2+12xy+9y^2)+(-2x^2+12x)+(-15y^2+60y)-48\)
\(=-(2x-3y)^2-2(x^2-6x+9)-15(y^2-4y+4)+30\)
\(=-(2x-3y)^2-2(x-3)^2-15(y-2)^2+30\le30\)
Dấu " = " xảy ra khi : 2x - 3y = 0 ; x - 3 = 0 , y - 2 = 0 => \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy GTLN của M là \(\frac{30}{8}=5\)tại x = 3 , y = 2
Chúc bạn học tốt :>

A = x2 -2xy + 2y2+ 2x - 10y -5
= x2 - 2xy + y2 + y2 + 2x - 2y - 8y -5
= [(x2 - 2xy + y2) + 2 ( x - y) + 1]2 + (y2 - 8y + 16) - 22
= [ (x - y)2 + 2(x - y) + 1]2 + (y - 4)2 - 22
= (x - y + 1)2 + ( y - 4)2 - 22 ≥ -22
=> Min của A = -22 khi {y−4=0x−y+1=0{y−4=0x−y+1=0 => {y=4x−3=0{y=4x−3=0 => {y=4x=3{y=4x=3
Vậy Min của A = 2016 khi x = 3 và y = 4.




\(A=2x^2+9y^2-6xy-6x-12y+2004\)
\(A=\left(3y\right)^2-2\cdot3y\cdot2+2^2+2x^2-6x+2000\)
\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2\right)+1997,75\)
\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1997,75\)
\(A\ge1997,75\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}}\)
Vậy,.........
Sửa cho Bonking ( bắt đầu dòng 3 )
\(A=\left(3y-2\right)^2+2\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right)+2000\)
\(A=\left(3y-2\right)^2+2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+2000\)
\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}+2000\)
\(A=\left(3y-2\right)^2+2\left(x-\frac{3}{2}\right)^2+1995,5\)
\(A\ge1995,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3y-2=0\\x-\frac{3}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}\)
Vậy,.........