K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
24 tháng 6 2018
1) \(A=\frac{2x+1}{x^2+2}\)
\(=\frac{\frac{1}{2}\left(x^2+4x+4\right)-\frac{1}{2}\left(x^2+2\right)}{x^2+2}\)
\(=\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\frac{1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của \(A=-\frac{1}{2}\)khi x = -2
TN
1
NA
0
BT
1
17 tháng 7 2016
a,A=x^2+2.x.5/2+25/4+3/4
=(x+5/2)2+3/4
nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4
vậy GTNN của A là 3/4
b,B=6x-x2-5
= - (x2-6x+5)
= - (x2-2.x.3+9-4)
=-[(x-3)2-4]
=-(x-3)^2+4
nx; -(x-3)^2 luôn nhỏ hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4
Vậy GTLN của B là 4
Tìm GTNN or GTLN bằng pp giải đenta nhé
\(y=\frac{x^2}{x^2-5x+7}\Leftrightarrow y.x^2-5xy+7y=x^2\Leftrightarrow\left(y-1\right)x^2-5xy+7y=0\)
\(\Delta=\left(5y\right)^2-4\left(y-1\right).7y\ge0\)
Giải BĐT trên là ra nhé
ta có:\(x^2-5x+7=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}>0\); do đó y xác định với mọi x
\(y=\frac{x^2}{x^2-5x+7}\Leftrightarrow yx^2-5yx+7=x^2\)
\(\Leftrightarrow\left(y-1\right)x^2-5yx+7y=0\)
-, Xét y = 1 ,ta có \(-5x+7=0\Leftrightarrow x=\frac{7}{5}\)
- , Xét y\(\ne\)1 ,ta có \(\Delta=25y^2-28y\left(y-1\right)=25y^2-28y^2+28y\)
\(=-3y^2+28y=y\left(-3y+28\right)\)
Để có x thì phải có \(\Delta\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}y\ge0;-3y+28\ge0\\y\le0;-3y+28\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y\ge0;y\le\frac{28}{3}\\y\le0;y\ge\frac{28}{3}\end{cases}}\Leftrightarrow0\le y\le\frac{28}{3}\)
y=0 thì \(x=\frac{5y}{2\left(y-1\right)}=0\)
y=\(\frac{28}{3}\)thì \(x=\frac{5y}{2\left(y-1\right)}=\frac{14}{5}\)
Vậy: Giá trị nhỏ nhất của y là 0 với x =0
Giá trị lớn nhất của y là \(\frac{28}{3}\)với x=\(\frac{14}{5}\)