Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0\le\sin^2x\le1\Rightarrow0,5^0\ge0,5^{\sin^2x}\ge0,5^1\)
\(\Leftrightarrow1\ge f\left(x\right)\ge\frac{1}{2}\)
\(\Leftrightarrow\) Max f(x) = 1 khi \(x=k\pi\)
Min f(x) =\(\frac{1}{2}\) khi \(x=\frac{\pi}{2}+k\pi\) \(k\in Z\)
Đặt \(t=\sin^2x\) với \(t\in\left[0;1\right]\Rightarrow f\left(x\right)=0,5^t=g\left(t\right)\) với \(t\in\left[0;1\right]\)
Ta có : \(g'\left(t\right)=0,5^1\ln0,5=-0,5^t\ln2< 0\) với mọi \(t\in\left[0;1\right]\) hàm số nghịch biến với mọi \(t\in\left[0;1\right]\)
\(\Rightarrow0\le t\le1\Rightarrow g\left(0\right)\ge g\left(t\right)\ge g\left(1\right)\Leftrightarrow1\ge g\left(t\right)\ge\frac{1}{2}\)
Vậy Max f(x) = 1 khi \(x=k\pi\)
Min \(f\left(x\right)=\frac{1}{2}\) khi \(x=\frac{\pi}{2}+k\pi\) (k thuộc Z)
\(f\left(x\right)=\dfrac{2x-1}{x-3}=\dfrac{2\left(x-3\right)+5}{x-3}=1+\dfrac{5}{\left(x-3\right)}\)
f(x) có dạng \(y=\dfrac{5}{x}\Rightarrow\) f(x) luôn nghịch biến
Tất nhiên bạn có thể tính đạo hàm --> f(x) <0 mọi x khác -3
f(x) luôn nghich biến [0;2] < -3 thuộc nhánh Bên Phải tiệm cận đứng
\(\Rightarrow\left\{{}\begin{matrix}Max=f\left(0\right)=\dfrac{1}{3}\\Min=f\left(2\right)=-3\end{matrix}\right.\)
\(f'\left(x\right)=2-\dfrac{\pi}{2}sin\left(\dfrac{\pi x}{3}\right)=\dfrac{1}{2}\left(4-\pi sin\left(\dfrac{\pi x}{2}\right)\right)\)
Do \(\left|\pi sin\left(\dfrac{\pi x}{2}\right)\right|\le\pi< 4\Rightarrow f'\left(x\right)>0\) ; \(\forall x\)
\(\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow f\left(x\right)_{min}+f\left(x\right)_{max}=f\left(-2\right)+f\left(2\right)=-4+cos\left(-\pi\right)+4+cos\left(\pi\right)=-2\)
Ta có : \(f'\left(x\right)=2x+\frac{2}{1-2x}=\frac{-4x^2+2x+2}{1-2x}=0\Leftrightarrow-4x^2+2x+2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\in\left[-2;0\right]\\x=1\notin\left[-2;0\right]\end{array}\right.\)
Mà :
\(\begin{cases}f\left(-2\right)=4-\ln5;x=-2\\f\left(-\frac{1}{2}\right)=\frac{1}{4}-\ln2=\frac{1-4\ln2}{4};x=-\frac{1}{2}\\\end{cases}\)
Đặt \(t=\log x\) với \(x\in\left[10;1000\right]\Rightarrow t\in\left[1;3\right]\Rightarrow f\left(x\right)=t^2-4t+3=g\left(t\right)\) với \(t\in\left[1;3\right]\)
Ta có : \(g'\left(t\right)=2t-4=0\Leftrightarrow t=2\in\left[1;3\right]\)
Mà : \(\begin{cases}g\left(1\right)=0\\g\left(2\right)=-1\\g\left(3\right)=0\end{cases}\) \(\Rightarrow\begin{cases}Max_{x\in\left[10;1000\right]}f\left(x\right)=0;x=10;x=1000\\Min_{x\in\left[10;1000\right]}f\left(x\right)=0;x=1000\end{cases}\)
Chọn B
Hàm số xác định và liên tục trên đoạn [- 5 ; 5 ]
Ta có
Ta có:
Suy ra
Đặt \(t=\sin^2x\Rightarrow\begin{cases}\cos^2x=1-t\\t\in\left[0;1\right]\end{cases}\) \(\Leftrightarrow f\left(x\right)=5^t+5^{1-t}=g\left(t\right);t\in\left[0;1\right]\)
Ta có : \(g'\left(t\right)=5^t\ln5-5^{1-t}\ln5=\left(5^t-5^{1-t}\right)\ln5=0\)
\(\Leftrightarrow5^t=5^{1-t}\)
\(\Leftrightarrow t=1-t\)
\(t=\frac{1}{2}\)
Mà \(\lim\limits_{x\rightarrow-\infty}g\left(t\right)=\lim\limits_{x\rightarrow-\infty}\left(5^t-5^{1-t}\right)=+\infty\)
\(\lim\limits_{x\rightarrow+\infty}g\left(t\right)=\lim\limits_{x\rightarrow+\infty}\left(5^t-5^{1-t}\right)=+\infty\)
Ta có bảng biến thiên
\(\Rightarrow\) Min \(f\left(x\right)=2\sqrt{5}\) khi \(t=\frac{1}{2}\Leftrightarrow\sin^2x=\frac{1}{2}\Leftrightarrow\frac{1-\cos2x}{2}=\frac{1}{2}\)
\(\Leftrightarrow\cos2x=0\)
\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\) \(\left(k\in Z\right)\)