Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\dfrac{2x-1}{x-3}=\dfrac{2\left(x-3\right)+5}{x-3}=1+\dfrac{5}{\left(x-3\right)}\)
f(x) có dạng \(y=\dfrac{5}{x}\Rightarrow\) f(x) luôn nghịch biến
Tất nhiên bạn có thể tính đạo hàm --> f(x) <0 mọi x khác -3
f(x) luôn nghich biến [0;2] < -3 thuộc nhánh Bên Phải tiệm cận đứng
\(\Rightarrow\left\{{}\begin{matrix}Max=f\left(0\right)=\dfrac{1}{3}\\Min=f\left(2\right)=-3\end{matrix}\right.\)
f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].
Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.
Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.
\(f'\left(x\right)=1-\dfrac{9}{x^2}\)
\(f'\left(x\right)=0\Rightarrow x=\pm3\)
\(f''\left(x\right)=\dfrac{18}{x^3}\) \(\left\{{}\begin{matrix}f''\left(3\right)>0\\f''\left(-3\right)< 0\end{matrix}\right.\) vậy f(x) đạt cực tiểu tại x=3 trong khoảng đang xét hàm liên tục [2,4]
\(f\left(3\right)=3+\dfrac{9}{3}=6\)
\(\left\{{}\begin{matrix}f\left(2\right)=2+\dfrac{9}{2}=\dfrac{13}{2}\\f\left(4\right)=4+\dfrac{9}{4}=\dfrac{25}{4}< \dfrac{13}{2}\end{matrix}\right.\)
kết luận
GTLN f(x) trên đoạn [2,4] =\(\dfrac{13}{2}\)
GTNN f(x) trên đoạn [2,4] = \(6\)
\(f'\left(x\right)=1-\dfrac{9}{x^2}=\dfrac{x^2-9}{x^2}\)
\(f'\left(x\right)=0\Leftrightarrow x=\pm3\)
Hàm số nghịch biến trong các khoảng (-3; 0), (0; 3) và đồng biến trong các khoảng \(\left(-\infty;3\right)\left(3;+\infty\right)\)
Ta có bảng biến thiên:x | \(-\infty;-3;0\) | \(2;3;4;+\infty\) |
f'(x) | + 0 - | - - 0 + + |
f(x) |
Ta có: \(\left[2;4\right]\subset\left(0;+\infty\right);\left[{}\begin{matrix}f\left(2\right)=6,5\\f\left(3\right)=6\\f\left(4\right)=6,25\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\min\limits_{\left[2;4\right]}f\left(x\right)=f\left(3\right)=6\\\max\limits_{\left[2;4\right]}f\left(x\right)=f\left(2\right)=6,5\end{matrix}\right.\)
Ta có :
\(f'\left(x\right)=\frac{-\frac{\frac{1}{x}}{2\sqrt{\ln x}}}{\ln x}=-\frac{1}{2x\ln x\sqrt{\ln x}}< 0\) với mọi \(x\in\left[e;e^2\right]\Rightarrow\) hàm số nghịch biến với mọi \(x\in\left[e;e^2\right]\)
\(e\le x\le e^2\Rightarrow f\left(e\right)\ge f\left(x\right)\ge f\left(e^2\right)\Leftrightarrow1\ge f\left(x\right)\ge\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\begin{cases}Max_{x\in\left[e;e^2\right]}f\left(x\right)=1;x=e\\Min_{x\in\left[e;e^2\right]}f\left(x\right)=\frac{\sqrt{2}}{2};x=e^2\end{cases}\)
\(f\left(x\right)=\left(\ln x\right)^{-\frac{1}{2}}\Rightarrow f'\left(x\right)=-\frac{1}{2}\left(\ln x\right)^{-\frac{3}{2}}.\frac{1}{x}=-\frac{1}{2x\ln x\sqrt{\ln x}}\)
Ta có : \(\begin{cases}f\left(e\right)=1\\f\left(e^2\right)=\frac{\sqrt{2}}{2}\end{cases}\)
\(\Leftrightarrow\begin{cases}Max_{x\in\left[e;e^2\right]}f\left(x\right)=1;x=e\\Min_{x\in\left[e;e^2\right]}f\left(x\right)=\frac{\sqrt{2}}{2};x=e^2\end{cases}\)
\(f\left(x\right)=\frac{x^2}{2}-4\ln\left(3-x\right)\) trên đoạn \(\left[-2;1\right]\)
Ta có :
\(f'\left(x\right)=x+\frac{4}{3-x}=\frac{-x^2+3x+4}{3-x}=0\Leftrightarrow-x^2+3x+4=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\in\left[-2;1\right]\\x=4\notin\left[-2;1\right]\end{array}\right.\)
Mà :
\(\begin{cases}f\left(-2\right)=2-4\ln5\\f\left(-1\right)=\frac{1}{2}-8\ln2=\frac{1-16\ln2}{2}\\f\left(1\right)=\frac{1}{2}-4\ln2=\frac{1-8\ln2}{2}\end{cases}\) \(\Rightarrow\begin{cases}Max_{x\in\left[-2;1\right]}f\left(x\right)=\frac{1-8\ln2}{2};x=1\\Min_{x\in\left[-2;1\right]}f\left(x\right)=\frac{1-16\ln2}{2};x=-1\end{cases}\)
Ta có : \(f\left(x\right)=2^{x-1}+2^{3-x}\ge2\sqrt{2^{x-1}.2^{3-x}}=4\)
Dấu bằng xảy ra khi và chỉ khi \(2^{x-1}=2^{3-x}\Leftrightarrow x-1=3-x\)
\(\Leftrightarrow x=2\)
Vậy Min \(f\left(x\right)=4\) khi x = 2
Ta có \(f'\left(x\right)=2^{x-1}\ln2-2^{3-x}\ln2=\left(2^{x-1}-2^{3-x}\right)\ln2=0\)
\(\Leftrightarrow2^{x-1}=^{3-x}\)
\(\Leftrightarrow x-1=3-x\)
\(\Leftrightarrow x=2\)
Mà \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(2^{x-1}+2^{3-x}\right)=+\infty\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(2^{x-1}+2^{3-x}\right)=+\infty\)
Ta có bảng biến thiên :
Vậy Min f(x) = 4 khi x = 2
Ta có : \(-x+\sqrt{x}=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(\Rightarrow f\left(x\right)=3^{-x+\sqrt{x}}\le3^{\frac{1}{4}}=\sqrt[4]{3}\Rightarrow\) Max \(f\left(x\right)=\sqrt[4]{3}\) khi \(x=\frac{1}{4}\)
Không có giá trị Min