Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\hept{\begin{cases}\left|x-1,5\right|\ge0\forall x\\\left|2x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x-1,5\right|+\left|2x-3\right|-7\ge-7\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1,5=0\\2x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1,5\\x=1,5\end{cases}}\Rightarrow x=1,5}\)
Vậy GTNN của A là - 7 khi x = 1,5
a)Ta có: |4,3-x|>=0(với mọi x)
nên 3,7+|4,3-x|>=3,7 hay P>=3,7
Do đó, GTNN của P là 3,7 khi:|4,3-x|=0
4,3-x=0
x=4,3-0
x=4,3
b)Ta có: |2x-1,5|>=0(với mọi x)
-|2x-1,5|<=0
nên 5,5-|2x-1,5|<=5,5 hay Q<=5,5
Do đó, GTLN của Q là 5,5 khi:|2x-1,5|=0
2x-1,5=0
2x=0+1,5
2x=1,5
x=1,5/2=15/2=7,5
Vậy GTLN của Q là 5,5 khi x=7,5
4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5
A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)
TH1: x-5>0=>x>5=>2/x-5>0(1)
Th2:x-5<0=>x<5=>2/x-5<0(2)
(1), (2)=>x-5<0(b)
(a),(b)=>x-5=-1=>x=4
vậy A nhỏ nhất là -3
a, Ta có P=3,7+ |4,3-x|
do |4,3-x|\(\ge0\Rightarrow3,7+\left|4,3-x\right|\ge3,7\)
\(\Rightarrow P\ge3,7\)=> GTNN của P =3,7\(\Leftrightarrow\left|4,3-x\right|=0\)
\(\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
Vậy GTNN của P=3,7\(\Leftrightarrow x=4,3\)
b,Ta có Q=5,5-|2x-1,5|
Do \(\left|2x-1,5\right|\ge0\Rightarrow5,5-\left|2x-1,5\right|\le5,5\)
=>\(Q\le5,5\Rightarrow\)GTLN của Q =5,5\(\Leftrightarrow\left|2x-1,5\right|=0\Leftrightarrow2x-1,5=0\)
\(\Leftrightarrow2x=1,5\Leftrightarrow x=0,75\)
Vậy GTLN của Q=5,5 \(\Leftrightarrow x=0,75\)
Ta có :
\(\left|x-3\right|+2\ge2\)\(\Rightarrow\left(\left|x+3\right|+2\right)^2\ge4\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2017\ge4+0+2017\)
\(\Rightarrow P\ge2017\)
Dấu \("="\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=4\\\left|y-3\right|=0\end{cases}}\)\(\)\(\hept{\begin{cases}\orbr{\begin{cases}\left|x-3\right|+2=2\\\left|x-3\right|+2=-2\end{cases}}\\y-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}\left|x-3\right|+2=2\\\left|x-3\right|+2=-2\left(L\right)\end{cases}}\\y-3=0\end{cases}}\)
Ta có:
\(B-2011=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
\(\Rightarrow B-2011\ge2\)\(\Rightarrow B\ge2013\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2=0\\3-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x=2\\x\le3\end{cases}\)\(\Leftrightarrow x=2\)
Vậy MinB=2013 khi x=2
a) P=3,7+Ix-3I
Ix-3I luôn lớn hơn và nhỏ nhất là bằng 0
P nhỏ nhất là bằng 3,7 khi và chỉ khi x-3 = 0 => x = 3
P không có giá trị lớn nhất
b) Q=5,5-Ix-1,5I
Ix-1,5I luôn lớn hơn và nhỏ nhất là bằng 0
Q lớn nhất là bằng 5,5 khi và chỉ khi x - 1,5 = 0 => x = 1,5
Q thì không có giá trị nhỏ nhất