Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi An=2016n/2011+n.n! với n=1,2,3...
Ta so sánh 2 phân số
An=2016n/20n+11.n!,An+1=2016n+1/20n+12.(n+1)!
=>An=2016n.20.(n+1)/20n+12.(n+1)!,An+1=2016n.2016/20n+12.(n+1)!
Để so sánh tử số ta chỉ cần so sánh 20(n+1) với 2016.Khi đó ta thấy
20(n+1)<2016 <=> n < hoặc = 99 =>An<An+1 <=> n< hoặc = 99
20(n+1)>2016 <=> n > hoặc =100 =>An>An+1 <=> n> hoặc =100
Do đó A1<A2<...<A100>A101>A102>...
Vậy An đạt giá trị lớn nhất khi n=100
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
Ta có : P=6n+5/3n+2= 6n+4+1/3n+2= 2.(3n+2)+1/3n+2= 2 + 1/3n+2
Để P đạt giá trị lớn nhất khi 3n+1 nhỏ nhất
--> 1/3n+2 < hoặc =1 (Vì mẫu số =1 là nhỏ nhất trong số tự nhiên,nếu mẫu số là 1 số âm và tử số dương thì p/s đó sẽ bé hơn 1 và tử số bằng 1 thì ko có mẫu số nào có thể làm cho p/s đó >1.Đây là mk giải thích thêm thôi nha,chứ mk ko có ý gì đâu.)
Để 3n+2 nhỏ nhất thì 1/3n+2=1
-->3n+2=1
3n=(-1)
n=(-1/3)
Vậy GTLN của P là 2+1=3 khi n = (-1/3)
Nếu mk làm sai thì ae sửa lại hộ mk nha.
a: A là phân số khi 3n+3<>0
=>n<>-1
b: \(A=\dfrac{12}{3\left(n+1\right)}=\dfrac{4}{n+1}\)
Để A nguyên thì \(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
Tham khảo link : https://hoc24.vn/cau-hoi/bai-6-tim-n-thuoc-z-de-phan-so-a-dfrac20n-134n-3a-a-co-gia-tri-nho-nhat-b-a-co-gia-tri-nguyen.160524630905
a, \(M=\left(x-2\right)^2-22\)
Có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-22\ge-22\forall x\)
hay GTNN của M là -22
Dấu "=" xảy ra tại \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTNN của M là -22 tại x=2.
b, \(N=9-|x+3|\)
Có: \(|x+3|\ge0\forall x\)
\(\Rightarrow9-|x+3|\le9\forall x\)
hay GTLN của N là 9
Dấu "=" xảy ra tại \(|x+3|=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy GTLN của N là 9 tại x = -3.
để n+5/n+2 thuộc Z
=>n+5 chia hết n+2
mà n+5=n+2+3
=>n+2+3 chia hết n+2
=>3 chia hết n+2
=>n+2 thuộc Ư(3)
mà Ư(3)={1;-1;3;-3}
=>n+3 thuộc {1;-1;3;-3}
=>n thuộc {-2;-4;0;-6}
rất cặn kẽ rùi đó
n + 5 : n + 2
=> n + 2 + 3 : n + 2
=> n + 2 \(\in\) Ư ( 8 ) = { -1 ; 1 ; -2 ; 2 ; - 4 ; 4 ; -8 ; 8 }
=> n + 2 = -1 => n = -3
=> n + 2 = 1 => n = -1
=> n + 2 = -2 => n = -4
=> n + 2 = 2 => n =0
=> n + 2 = -4 => n = -6
=> n + 2 = 4 => n = 2
=> n + 2 = -8 => n = -10
=> n + 2 = 8 => n = 6
\(A=\dfrac{n-3}{n+2}=1-\dfrac{5}{n+2}\)
TH1 : n >=-1 => n+2>=1 >0
\(\Rightarrow A\ge1-\dfrac{5}{1}=-4\)
Dấu = khi n=-1
TH2: n<= -3 => n+2<=-1 <0
\(\Rightarrow A\le1-\dfrac{5}{-1}=6\)
Dấu = xảy ra khi n=-3
Cảm ơn vì bn đã giúp. Nhưng bn có thể giải chi tiết cho mik đc ko ạ?