\(\sqrt{x-3}+\sqrt{y-4}\)biết x+y=8

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

Gọi \(A=\sqrt{x-3}+\sqrt{y-4}\)

Ta có : \(A^2=x-3+y-4=2\sqrt{\left(x-3\right)\left(y-4\right)}=x+y-7+2\sqrt{2\left(x-3\right)\left(y-4\right)}\)

\(=1+2\sqrt{\left(x-3\right)\left(y-4\right)}\)

Theo AM - GM ta có : \(2\sqrt{\left(x-3\right)\left(y-4\right)}\le x-3+y-4=x+y-7=8-7=1\)

\(\Rightarrow A^2\le1+1=2\Rightarrow A\le\sqrt{2}\)Có GTLN là \(\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=y-4\Leftrightarrow\hept{\begin{cases}x-y=-1\\x+y=8\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{9}{2}\end{cases}}}\)

19 tháng 8 2016
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
19 tháng 8 2016
Hai cái còn lại làm tương tự
13 tháng 10 2017

\(A=\sqrt{x-3}+\sqrt{y-4}\)

\(\le\sqrt{\left(1+1\right)\left(x-3+y-4\right)}=\sqrt{2.1}=\sqrt{2}\)

17 tháng 12 2016

x+y=4 nên xảy ra các trường hợp là x=0,y=4 ; x=1,y=3 ; x=2,y=2 ; x=3,y=1 ; x=4,y=0

TH1: x=0,y=4

=>\(\sqrt{-1}\)+\(\sqrt{2}\)thì ko có chuyện đó

TH2: x=1,y=3

=>\(\sqrt{0}\)+\(\sqrt{1}\)bằng 1

TH3:x=2,y=2

=>\(\sqrt{1}\)+\(\sqrt{0}\)bằng 1

TH4:x=3,y=1 bằng 1 bạn tự  tính

TH5: x=4,y=0 thì cũng ko có chuyện đó

Vậy tổng S lớn nhất là 1.

k mình nhé hơi thủ công

Tại mình giải theo kiểu lớp 6 và ... bấm máy tính bạn ah

17 tháng 12 2016

\(\hept{\begin{cases}\sqrt{x-1}>=0\\\sqrt{y-2}>=0\end{cases}}\)

\(=>\hept{\begin{cases}x-1>=0\\y-2>=0\end{cases}}\)

\(=>\)Chỉ còn 2 trường hợp

TH1:\(\hept{\begin{cases}x=2\\y=2\end{cases}}\)

\(< =>S=\sqrt{2-1}+\sqrt{2-2}\)

\(< =>S=1\)

TH2:\(\hept{\begin{cases}x=1\\y=3\end{cases}}\)

\(=>S=\sqrt{1-1}+\sqrt{3-2}\)

\(=>S=1\)

Vậy GTLN của S=1, Khi x=2,y=2 hoặc x=1,y=3

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

4 tháng 12 2016

$B = \sqrt{x-4} + \sqrt{12 -x}$

+) $B^2 = 8 + 2\sqrt{(x-4)(12-x)} \geqslant 8 + 2 \cdot 0 = 8 \implies B \geqslant \sqrt{8}$

Vậy $B_\text{min} = \sqrt{8} \iff (x-4)(12-x) = 0 \iff x =4$ hoặc $x =12 \implies (x;y) =\{ (4;11);(12;3)\}$

+) $B^2 = 8 + 2\sqrt{(x-4)(12-x)} = 8 + 2\sqrt{-x^2 + 16x - 48} = 8 + 2\sqrt{-(x-8)^2 + 16} \leqslant 8 + 2\sqrt{16} = 16 \implies B \geqslant 4$

Vậy $B_\text{max} =4 \iff x = 8 \iff (x;y) = (8;7)$

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?