Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = x2 - 5x + 1 = (x2 - 5x + 25/4) - 21/4 = (x - 5/2)2 - 21/4
Ta luôn có: (x - 5/2)2 \(\ge\)0 \(\forall\)x
=> (x - 5/2)2 - 21/4 \(\ge\)-21/4 \(\forall\)x
Dấu "=" xảy ra <=> x -5/2 = 0 <=> x = 5/2
Vậy Min A = -21/4 tại x = 5/2
Ta có: B = -x + 3x + 1 = -(x - 3x + 9/4) + 13/4 = -(x - 3/2)2 + 13/4
Ta luôn có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 13/4 \(\le\)13/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max B = 13/4 tại x = 3/2
(xem lại đề)
Ta có : \(A=1-x^2+x\)
\(\Rightarrow A=-\left(x^2-x-1\right)\)
\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}-\frac{5}{4}\right)\)
\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}\)
\(\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên : \(A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\forall x\)
Vậy Amax = \(\frac{5}{4}\) khi \(x=\frac{1}{2}\)
Ta có : \(B=5x-x^2\)
\(=-\left(x^2-5x\right)\)
\(=-\left(x^2-5x+\frac{25}{4}-\frac{25}{4}\right)\)
\(=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}\)
B\(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì \(-\left(x-\frac{5}{2}\right)^2\) \(\text{≤ }0∀x \)
Nên : B \(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\) \(\text{≤ }\frac{25}{4}∀x\)
Vậy \(B_{min}=\frac{25}{4}\) khi \(x=\frac{5}{2}\)
Giá trị nhỏ nhất:
\(A=x^2+4x+3=x^2+2.x.2+2^2-1=\left(x+2\right)^2-1\)
Vì \(\left(x+2\right)^2\ge0\)
nên \(\left(x+2\right)^2-1\ge-1\)
Vậy \(Min_A=-1\)khi \(x+2=0\Leftrightarrow x=-2\)
\(B=3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left[x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\)
Vì \(\left(x-\frac{5}{6}\right)^2\ge0\)
nên \(3\left(x-\frac{5}{6}\right)^2\ge0\)
do đó \(3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)
Vậy \(Min_B=-\frac{1}{12}\)khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Giá trị lớn nhất:
\(C=2x-x^2=-\left(x^2-2x\right)=-\left(x^2-2.x+1-1\right)=-\left(x-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0\)
nên \(-\left(x-1\right)^2\le0\)
do đó \(-\left(x-1\right)^2+1\le1\)
Vậy \(Max_C=1\)khi \(x-1=0\Leftrightarrow x=1\)
\(D=x-x^2+1=-\left(x^2-x+1\right)=-\left[x^2-2.x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\)
do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
Vậy \(Max_D=-\frac{3}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
1a) ta có \(A=3\left(x^2-x+\frac{5}{3}\right)=3\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{17}{12}\right)\)
\(=3\left(x-\frac{1}{2}\right)^2+\frac{17}{4}\)
đến đây thì tự đánh giá nhé
các câu kia tương tự nhé, riêng câu 1b thì tách ra và rút gọn rồi làm tương tự
My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé
https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N