K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

Ta có: A = x2 - 5x + 1 = (x2 - 5x + 25/4) - 21/4 = (x - 5/2)2 - 21/4

Ta luôn có: (x - 5/2)2 \(\ge\)\(\forall\)x

=> (x - 5/2)2 - 21/4 \(\ge\)-21/4 \(\forall\)x

Dấu "=" xảy ra <=> x -5/2 = 0 <=> x = 5/2

Vậy Min A = -21/4 tại  x = 5/2

Ta có: B = -x + 3x + 1 = -(x - 3x  + 9/4) + 13/4 = -(x - 3/2)2 + 13/4

Ta luôn có: -(x - 3/2)2 \(\le\)\(\forall\)x

=> -(x - 3/2)2 + 13/4 \(\le\)13/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x  = 3/2

Vậy Max B = 13/4 tại x = 3/2

(xem lại đề)

1 tháng 12 2021

\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)

\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)

Coi đây là PT bậc 2 ẩn x, PT có nghiệm 

\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)

Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)

\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)

\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)

Coi đây là PT bậc 2 ẩn x, PT có nghiệm

\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)

Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)

2 tháng 9 2017

Ta có : \(A=1-x^2+x\)

\(\Rightarrow A=-\left(x^2-x-1\right)\)

\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}-\frac{5}{4}\right)\)

\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}\)

\(\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)

Nên : \(A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\forall x\)

Vậy Amax = \(\frac{5}{4}\) khi \(x=\frac{1}{2}\)

2 tháng 9 2017

Ta có : \(B=5x-x^2\)

\(=-\left(x^2-5x\right)\)

\(=-\left(x^2-5x+\frac{25}{4}-\frac{25}{4}\right)\)

\(=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}\)

B\(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì \(-\left(x-\frac{5}{2}\right)^2\) \(\text{≤ }0∀x \)

Nên : B \(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\) \(\text{≤ }\frac{25}{4}∀x\)

Vậy \(B_{min}=\frac{25}{4}\) khi \(x=\frac{5}{2}\)

14 tháng 8 2017

My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé

https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N

14 tháng 8 2017

Ko biết đợi đứa khác đê

1 tháng 8 2016

Giá trị nhỏ nhất:

\(A=x^2+4x+3=x^2+2.x.2+2^2-1=\left(x+2\right)^2-1\)

Vì \(\left(x+2\right)^2\ge0\)

nên \(\left(x+2\right)^2-1\ge-1\)

Vậy \(Min_A=-1\)khi  \(x+2=0\Leftrightarrow x=-2\)

\(B=3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left[x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\)

Vì \(\left(x-\frac{5}{6}\right)^2\ge0\)

nên \(3\left(x-\frac{5}{6}\right)^2\ge0\)

do đó \(3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Vậy \(Min_B=-\frac{1}{12}\)khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)

Giá trị lớn nhất:

\(C=2x-x^2=-\left(x^2-2x\right)=-\left(x^2-2.x+1-1\right)=-\left(x-1\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0\)

nên \(-\left(x-1\right)^2\le0\)

do đó \(-\left(x-1\right)^2+1\le1\)

Vậy \(Max_C=1\)khi \(x-1=0\Leftrightarrow x=1\)

\(D=x-x^2+1=-\left(x^2-x+1\right)=-\left[x^2-2.x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\)

do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

Vậy \(Max_D=-\frac{3}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)