Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: 4-(x-1)^2>=0
=>(x-1)^2<=4
=>-2<=x-1<=2
=>-1<=x<=3
\(\left(x-1\right)^2>=0\)
=>-(x-1)^2<=0
=>\(-\left(x-1\right)^2+4< =4\)
=>\(\sqrt{-\left(x-1\right)^2+4}< =2\)
Dấu = xảy ra khi x=1
\(\sqrt{4-\left(x-1\right)^2}>=0\forall x\) thỏa mãn ĐKXĐ
Dấu = xảy ra khi 4-(x-1)^2=0
=>(2-x+1)(2+x-1)=0
=>(3-x)(1+x)=0
=>x=3 hoặc x=-1
`\sqrt{x^2 - 2x + 4}`
`=\sqrt{(x-1)^2 + 3}`
Do `\sqrt{(x-1)^2 + 3} >=0`
`(x-1)^{2} >=0`
`=>(x-1)^{2} + 3 >=3AAx`
`=>\sqrt{(x-1)^2 + 3} >= \sqrt{3}AAx`
Dấu "=" xảy ra `<=>x-1=0`
`<=>x=1`
Vậy `min` của biểu thức là `\sqrt{3} <=>x=1`
Xét A = \(3\left(\sqrt{x}-1\right)+\dfrac{12}{\sqrt{x}-1}+3\)
Áp dụng bdt Co-si, ta có:
\(3\left(\sqrt{x}-1\right)+\dfrac{12}{\sqrt{x}-1}\ge2\sqrt{3\left(\sqrt{x}-1\right)\dfrac{12}{\sqrt{x}-1}}=12\)
<=> A \(\ge15\)
Dấu"=" <=> x = 9
Lời giải:
Vì $x>1$ nên $\sqrt{x}-1>0$
$A=3(\sqrt{x}-1)+\frac{12}{\sqrt{x}-1}+3$
Áp dụng BĐT Cô-si cho các số dương:
$3(\sqrt{x}-1)+\frac{12}{\sqrt{x}-1}\geq 2\sqrt{3.12}=12$
$\Rightarrow A\geq 12+3=15$
Vậy $A_{\min}=15$. Giá trị này đạt tại $3(\sqrt{x}-1)=\frac{12}{\sqrt{x}-1}$
$\Leftrightarrow x=9$
Ta có:
\(A=\sqrt{1-x}+\sqrt{1+x}\) \(\left(-1\le x\le1\right)\)
\(=1.\sqrt{1-x}+1.\sqrt{1+x}\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(A=1.\sqrt{1-x}+1.\sqrt{1+x}\)
\(\le\sqrt{\left(1^2+1^2\right).\left(1-x+1+x\right)}=\sqrt{2.2}=2\)
Vậy \(A_{max}=2\), đạt được khi và chỉ khi \(\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{1+x}}\Leftrightarrow1-x=1+x\Leftrightarrow x=0\)
Đk: \(x\ge0\)
\(P=\dfrac{\sqrt{x}}{x+3\sqrt{x}+4}\)
\(\Leftrightarrow x.P+\sqrt{x}\left(3P-1\right)+4P=0\) (1)
Xét P=0 <=> x=0(tm)
Xét \(P\ne0\) .Coi pt (1) là phương trình ẩn \(\sqrt{x}\)
Phương trình (1) có nghiệm không âm khi \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\S\ge0\\P\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-7P^2-6P+1\ge0\\\dfrac{1-3P}{P}\ge0\\4\ge0\left(lđ\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le P\le\dfrac{1}{7}\\0< P\le\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow0< P\le\dfrac{1}{7}\)
Kết hợp với P=0 \(\Rightarrow0\le P\le\dfrac{1}{7}\)
Có \(\dfrac{1}{7}>0\) => maxP=\(\dfrac{1}{7}\). Thay \(P=\dfrac{1}{7}\) vào (1) tìm được x=4 (tm)
minP=0 <=> x=0
\(P=\dfrac{2\left(x^2+2\right)+x^2-4x+4}{x^2+2}=2+\dfrac{\left(x-2\right)^2}{x^2+2}\ge2\)
\(P=\dfrac{5\left(x^2+2\right)-2x^2-4x-2}{x^2+2}=5-\dfrac{2\left(x+1\right)^2}{x^2+2}\le5\)
Lời giải:
$y=\frac{x^2+3}{x^2-x+2}$
$\Leftrightarrow y(x^2-x+2)=x^2+3$
$\Leftrightarrow x^2(y-1)-xy+(2y-3)=0(*)$
Coi đây là pt bậc 2 ẩn $x$. Vì $y$ tồn tại nên $(*)$ luôn có nghiệm
$\Rightarrow \Delta=y^2-4(y-1)(2y-3)\geq 0$
$\Leftrightarrow -7y^2+20y-12\geq 0$
$\Leftrightarrow (7y-6)(2-y)\geq 0$
$\Leftrightarrow \frac{6}{7}\leq y\leq 2$
Vậy $y_{\min}=\frac{6}{7}; y_{\max}=2$
\(y=-x^2+40x+600\)
\(=-\left(x^2-40x+400\right)+1000\)
\(-\left(x-20\right)^2+1000\le1000\)
\(y_{max}=1000\Leftrightarrow x=20\)
\(B=\dfrac{2x^2+2x+2}{2\left(x^2+1\right)}=\dfrac{x^2+1+x^2+2x+1}{2\left(x^2+1\right)}=\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2\left(x^2+1\right)}\ge\dfrac{1}{2}\)
\(B=\dfrac{2x^2+2x+2}{2\left(x^2+1\right)}=\dfrac{3\left(x^2+1\right)-x^2+2x-1}{2\left(x^2+1\right)}=\dfrac{3}{2}-\dfrac{\left(x-1\right)^2}{2\left(x^2+1\right)}\le\dfrac{3}{2}\)