Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left|x-2012\right|+\left|x-2013\right|=\left|x-2012\right|+\left|2013-x\right|\)
\(\ge\left|x-2012+2013-x\right|=1\)
Áp dụng công thức: \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Dấu "=" xảy ra <=> \(\left(x-2012\right).\left(2013-x\right)\ge0\)
\(\hept{\begin{cases}x-2012\ge0\\2013-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}\Rightarrow}2012\le x\le2013}\)
Vậy Mmin = 1 khi và chỉ khi x={2012;2013}
Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|\)
\(=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2\right).\left(2013-2x\right)\ge0\)
\(\Leftrightarrow\left(2x-2\right).\left(2x-2013\right)\le0\)
\(\Rightarrow\hept{\begin{cases}2x-2\ge0\\2x-2013\le0\end{cases}\Rightarrow\hept{\begin{cases}2x\ge2\\2x\le2013\end{cases}}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2013}{2}\end{cases}}\)
\(\Rightarrow Min\left(A\right)=2011\Leftrightarrow1\le x\le\frac{2013}{2}\)
Mấy bạn kia làm sai hết rồi !!
P = |2013 - x| + |2014 - x| = |2013 - x| + |x - 2014|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
P = |2013 - x| + |x - 2014| ≥ |2013 - x + x - 2014| =|- 1| = 1
Dấu "=" xảy ra <=> (2013 - x)(x - 2014) ≥ 0 <=> 2013 ≤ x ≤ 2014
Dậy gtnn của P là 1 <=> 2013 ≤ x ≤ 2014
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|2013-x+2014-x\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge\left|4027\right|\)
\(\left|2013-x\right|+\left|2014-x\right|\ge4027\)
\(\Rightarrow\)\(Min_P=4027\)
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
Ta có M = |2012 - x| + |2013-x| = |2012 - x|+|x-2013| \(\ge\)|2012-x+x-2013|
=|2012-2013|=|-1|=1
\(\Rightarrow\) Mmin=1
GTNN:
Ta có M= |x-2013|+|x-2|= |2013-x|+|x-2| >= |x-2+2013-x|=2011
(vì giá trị tuyệt đối của một tổng luôn nhỏ hơn hoặc bằng tổng của các giá trị tuyệt đối)
Nên min M =2011. Dấu ''='' xảy ra khi và chỉ khi (2013-x)(x-2) >= 0
<=> 2<=x<=2013.