\(\frac{1}{^{x^2}-4x+8}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Ta có:

\(x^2-4x+8=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(\Rightarrow\frac{1}{x^2-4x+8}\le\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=2\)

Bài toán không có giá trị nhỏ nhất.Giải toán có sự trợ giúp của Wolfram|Alpha

24 tháng 7 2019

\(A=\frac{3-4x}{2x^2+2}\)

\(\Leftrightarrow2Ax^2+2A=3-4x\)

\(\Leftrightarrow2Ax^2+4x+2A-3=0\)

*Nếu A = 0 thì \(x=\frac{3}{4}\)

*Nếu A # 0 thì pt trên là pt bậc 2

Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                      \(\Leftrightarrow4-2A\left(2A-3\right)\ge0\)

                      \(\Leftrightarrow4-4A^2+6A\ge0\)

                     \(\Leftrightarrow-\frac{1}{2}\le A\le2\)

Vì \(-\frac{1}{2}< 0\Rightarrow\hept{\begin{cases}A_{min}=-\frac{1}{2}\Leftrightarrow x=...\\A_{max}=2\Leftrightarrow x=...\end{cases}}\)(CHỗ ... là tự làm nhé)

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

12 tháng 5 2017

A lớn nhất \(\Leftrightarrow x^2-4x+9\)nhỏ nhất

\(x^2-4x+9\Leftrightarrow\left(x-2\right)^2+5\ge5\)

Vậy \(MaxA=\frac{1}{5}\Leftrightarrow x=2\)

10 tháng 3 2018

A lớn nhất khi x^2-4x+9 nhỏ nhất

Ta có x^2-4x+9=(x^2-4x+4)+5

                           =(x-2)^2+5

Mà (x-2)^2≥0 với mọi x

=) (x-2)^2+5≥5 với mọi x.

=)A ≤ 1/5

Dấu "=" xảy ra khi:

x-2=0 =) x=2

Vậy Max A=1/5 (=) x=2

27 tháng 11 2017

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

16 tháng 5 2019

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

16 tháng 5 2019

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

10 tháng 11 2019

\(Q=\frac{x^2-x+1}{x^2+x+1}=\frac{\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2+x+1}+\frac{1}{3}=\frac{2}{3}\frac{\left(x-1\right)^2}{x^2+x+1}+\frac{1}{3}\ge\frac{1}{3}\)

\(\Rightarrow MIN\left(Q\right)=\frac{1}{3}\)Dấu "=" xảy ra khi x=1

\(Q=\frac{x^2-x+1}{x^2+x+1}=\frac{-2x^2-4x-2}{x^2+x+1}+3=-2\frac{\left(x+1\right)^2}{x^2+x+1}+3\ge3\)

\(\Rightarrow MAX\left(Q\right)=3\)Dấu "=" xảy ra khi x=-1

10 tháng 11 2019

Viết lộn, \(Q\le3\)mới đúng