K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn D

NV
30 tháng 1 2022

\(f'\left(x\right)=3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(f\left(-1\right)=-2;f\left(0\right)=2;f\left(2\right)=-2\)

\(\Rightarrow M=2;m=-2\Rightarrow P=6\)

Cả 4 đáp án đều sai (kiểm tra lại đề bài, có đúng là \(f\left(x\right)=x^3-3x^2+2\) hay không?)

25 tháng 6 2017

Đáp án B

nên tập giá trị của hàm số là tập hợp các giá trị của y để phương trình có nghiệm.

Sử dụng điều kiện có nghiệm của phương trình suy ra được vậy m = -1 và 

23 tháng 5 2019

AH
Akai Haruma
Giáo viên
26 tháng 7 2017

Lời giải:

Ta có \(y=\sin x-\cos x\Rightarrow y'=\cos x+\sin x=0\Leftrightarrow \cos x=-\sin x\)

Kết hợp với \(\cos^2x+\sin^2x=1\) suy ra \((\sin x,\cos x)=\left (\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right)\) hoặc \(\left (\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\)

Với \((\sin x,\cos x)=\left (\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right)\) thì \(y=\sqrt{2}\)

Với \((\sin x,\cos x)=\left (\frac{-1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\) thì \(y=-\sqrt{2}\)

Do đó \(y_{\max}=\sqrt{2};y_{\min}=-\sqrt{2}\)

Đáp án B

29 tháng 7 2017

cách khác
đơn giản hóa vấn đề

\(A=sinx-cosx=sinx-sin\left(90^0-x\right)\)

\(A=2cos\left(\dfrac{\pi}{4}\right)sin\left(x-\dfrac{\pi}{4}\right)=\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)\)

\(-\sqrt{2}\le A\le\sqrt{2}\)

NV
4 tháng 4 2021

\(g\left(x\right)=x^4-4x^3+4x^2+a\)

\(g'\left(x\right)=4x^3-12x^2+8x=0\Leftrightarrow4x\left(x^2-3x+2\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

\(f\left(0\right)=f\left(2\right)=\left|a\right|\) ; \(f\left(1\right)=\left|a+1\right|\)

TH1: \(\left\{{}\begin{matrix}M=\left|a\right|\\m=\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\ge\left|a+1\right|\\\left|a\right|\le2\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{2}{3}\le a\le-\dfrac{1}{2}\\a\le-2\end{matrix}\right.\) \(\Rightarrow a=\left\{-3;-2\right\}\)

TH2: \(\left\{{}\begin{matrix}M=\left|a+1\right|\\m=\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a+1\right|\ge\left|a\right|\\\left|a+1\right|\le2\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}\le a\le-\dfrac{1}{3}\\a\ge1\end{matrix}\right.\) \(\Rightarrow a=\left\{1;2;3\right\}\)

20 tháng 4 2017

+ Xét hàm số f(x) =x2- 2x  trên đoạn [ -1; 2],

+  ta có đạo hàm f’(x) = 2( x-1)  và f’( x) =0 khi x= 1  

Vậy: 

TH1: Với  m a x [ - 1 , 2 ]   =   | m - 1 | ,

ta có  m - 1   ≥ m + 3 | m - 1 |   ≥ | m | | m - 1 |   =   5  

↔ | m - 1 | ≥ m + 3 | m - 1 |   ≥ | m | m   =   - 4   ∨   m   =   6 ↔ m   =   - 4

TH2: Với

  m a x [ - 1 , 2 ]   y   =   | m + 3 |   ↔ | m + 3 |   ≥ | m - 1 | | m + 3 |   ≥ | m | | m + 3 |   ≥ 5

  ↔ | m + 3 |     ≥ |   | m - 1 | | m + 3 |   ≥ | m | m   =   2   ∨   m   =   - 8   ↔   m   =   2

TH3: Với

  m a x     [ - 1 , 2 ]       y   =   | m |   ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | | m |   =   5 ↔   | m |   ≥ | m - 1 | | m | ≥ | m + 3 | m   =   5   ∨   m   =   - 5

( vô nghiệm)

Chọn D.

6 tháng 6 2023

Ta có:

\(y'=x^2-2mx+m^2-4\)

\(y''=2x-2m,\forall x\in R\)

Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:

\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)

=> B.

30 tháng 6 2019

Chọn đáp án D.

Đặt t = - sin x + 2  vì  - 1 ≤ sin x ≤ 1

⇒ t ∈ - 1 ; 3

Do đó

M = m a x [ - 1 ; 3 ] f t = f 3 = 3

m i n [ - 1 ; 3 ] f t = f 2 = - 2 ⇒ M - m = 5