K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

C=\(\frac{3}{4}\)

8 tháng 1 2016

là phân số à Vân Anh

26 tháng 10 2014

A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1 

B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2 

Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24

20 tháng 7 2016

cại đcm may

8 tháng 1 2016

4x2-4x+5=4x2-4x+1+4=[2x-1]2+4> hoac =4

Để C  có giá trị lớn nhất

=>[2x-1]2+4 có giá trị nhỏ nhất

=>[2x-1]2+4 có giá trị nhỏ nhất = 4

C có giá trị lớn nhất là3/4

Vay...

 

8 tháng 1 2016

3/(4x2-4x+5) là phân số à

3 tháng 12 2017

M = 12 - (3x^2+6x+3) = 12 - 3.(x+1)^2 <= 12

Dấu "=" xảy ra <=> x+1 = 0 <=> x = -1

Vậy GTLN của M = 12 <=> x  = -1

k mk nha

3 tháng 12 2017

\(M=-3x^2-6x+9\)

\(=\left(-3x^2-6x-3\right)+12\)

\(=12-3\left(x^2+2x+1\right)\)

\(=12-\left(x+1\right)^2\)

Do \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow M\le12\)

Dấu = xảy ra khi \(\left(x+1\right)^2=0\)

                            \(\Rightarrow x+1=0\)

                             \(\Rightarrow x=-1\)

Vậy \(M_{Max}=12\Leftrightarrow x=-1\)

14 tháng 10 2018

\(B=-3x^2+x+1\)

\(B=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(B=-3\left[\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}\right)-\dfrac{13}{36}\right]\)

\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)\(\le\dfrac{13}{12}\forall x\)

\(B=\dfrac{13}{12}\Leftrightarrow-3\left(x-\dfrac{1}{6}\right)^2=0\Leftrightarrow x=\dfrac{1}{6}\)

Vậy Max B = 13/12 <=> x = 1/6

25 tháng 7 2021

\(F=-x^2-4x+20=-\left(x^2+4x-20\right)\)

\(=-\left(x^2+4x+4-24\right)=-\left(x+2\right)^2+24\le24\)

Dấu ''='' xảy ra khi x = -2

Vậy GTLN F là 24 khi x = -2 

Ta có: \(F=-x^2-4x+20\)

\(=-\left(x^2+4x-20\right)\)

\(=-\left(x^2+4x+4-24\right)\)

\(=-\left(x+2\right)^2+24\le24\forall x\)

Dấu '=' xảy ra khi x=-2

22 tháng 12 2016

\(ax^2+a=3-4x\Leftrightarrow ax^2+4x+a-3=0\left(1\right)\)

tìm  tiềm kiện để (1) có nghiệm

a=0=>có nghiệm x=3/4 với a khác không

\(2^2-a\left(a-3\right)\ge0\)

\(\Leftrightarrow a^2-3a-4\le0\)\(\Rightarrow-1\le a\le4\)

GTLN A=\(4\)

22 tháng 12 2016

A=(3-4x)/(x^2+1)

ta có 4-A=4-(3-4x)/(x^2+1)

=[4(x^2+1)-3+4x]/(x^2+1)

=(4x^2+4-3+4x)/(x^2+1)=(4x^2+4x+1)/(x^2+1)

=(2x+1)^2/(x^2+1) >= 0 với mọi x

=>A=4-(2x+1)^2/(x^2+1) <= 4 với mọi x 

Vậy maxA=4 ,dấu "=" xảy ra khi x=-1/2