Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
- Với x-2=-(x-2)
=>x-2=-x+2
=>x=2
- Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn
b)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
- Với 2x+3=-(5x-1)
=>2x+3=-5x+1
=>x=-2/7 (loại)
- Với 2x+3=5x-1
=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
Ta có: \(D=\left|x\right|+x\)
\(\Rightarrow\orbr{\begin{cases}D=-x+x=0\\D=x+x=2x\end{cases}}\)
Vậy Dmin= 0
+)Với \(x\le2016\)
=>\(A=\left|x-2016\right|+x-1=2016-x+x-1=2015\)
+)Với x>2016
=>\(A=\left|x-2016\right|+x-1=x-2016+x-1=2x-2017>2015\)
So sánh 2 trường hợp ta thấy A đạt giá trị nhỏ nhất là 2015 khi \(x\le2016\)
Ta có \(\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|\text{b }\right|\ge\left|a+b\right|\) dấu đẳng thức xảy ra khi \(ab\ge0\)
Khi đó ta có \(\left|2002-x\right|+\left|x-2001\right|\ge\left|x-2001+2002-x\right|=\left|1\right|=1\)
Vậy min của biểu thức trên bằng 1 khi \(\left(x-2001\right)\left(2002-x\right)\ge0\) tức là \(2001\le x\le2002\)