K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

a,A=12

b,B=8

c,C=-3

6 tháng 8 2017
A= (x^2-4x+4)+3 A= (x-2)^2>= 3 Vậy GTNN của A=3 <=> x=2 B=x^2+8x B=(x^2+8x+16)-16 B=(x+4)^2-16>= -16 Vậy GTNN của A=-16 <=> x--4 C=-2x^2+8x-15 C=-2(x^2-4x+15/2) C=-2(x^2-4x+4)+7/2 C=-2(x-2)^2+7/2 Vậy GTNN của C= 7/2 <=> x=2
26 tháng 8 2020

A = x2 + 4x + 7

   = ( x2 + 4x + 4 ) + 3

   = ( x + 2 )2 + 3

( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 3 ≥ 3

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 3 <=> x = -2

B = 2x2 - 6x 

   = 2( x2 - 3x + 9/4 ) - 9/2

   = 2( x - 3/2 )2 - 9/2

2( x - 3/2 )2 ≥ 0 ∀ x => 2( x - 3/2 )2 -9/2 ≥ -9/2 

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinB = -9/2 <=> x = 3/2

C = -2x2 + 8x - 15

    = -2( x2 - 4x + 4 ) - 7

    = -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

26 tháng 8 2020

Mình làm ở bài trước rồi nhé -..-

26 tháng 8 2020

câu a khác mak

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

21 tháng 10 2023

loading...  loading...  loading...  

1 tháng 12 2021

a,Ta có B = x2-x+x = x2

Mà x2 ≥ 0 với ∀ x.Dấu ''='' xảy ra <=> x=0

Vậy Min B = 0 tại x = 0

b,Ta có 4x-x2+3 = -x2+4x-4+7

                          = -(x2-4x+4)+7

                          = -(x-2)2+7

Mà (x-2)2 ≥ 0 với ∀ 0 => -(x-2)2 ≤ 0 => -(x-2)2+7 ≤ 7

Dâu ''='' xảy ra <=> -(x-2)2 = 0 <=> x-2 = 0 <=> x=2

Vậy Max c = 7 tại x = 2.

c,Ta có 2x-2x2-5 = -x2+2x-1-x2-4

                           = -(x-1)2-x2-4

Mà (x-1)2 ≥ 0 => -(x-1)2 ≤ 0

       x2 ≥ 0 => -x2 ≤ 0

Ta có D đạt GTLN <=> -(x-1)2 = 0 hoặc -x2 = 0

-Xét -(x-1)2 = 0 <=> x = 1. Khi đó ta có D = -5

-Xét -x2 = 0 <=> x = 0. Khi đó ta có D = -5

Vậy Max D = -5 tại x = 0 hoặc x = 1