Tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của z , b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

Đáp án A

Gọi z = x + i y ; x , y ∈ ℝ .

z − i = 2 ⇔ x + i y − i = 2 ⇔ x 2 + y − 1 2 = 4 ⇒ x 2 + y 2 = 2 y + 3

Do đó tập hợp các số phức z là đường tròn tâm I(0;1), bán kính R=2 (như hình vẽ).

z = x 2 + y 2 = 2 y + 3 , − 1 ≤ y ≤ 3 − 2 ≤ x ≤ 2 .

Dễ thấy,

  z min = 2 − 1 + 3 = 1 ; z max = 2.3 + 3 = 3.

23 tháng 2 2016

\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)

Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*

Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)

Vậy 1 < M < 2 nên M không phải là số tự nhiên/

8 tháng 1 2016

khó voho

8 tháng 1 2016

Hỏi đáp Toánbit lm bài này k giup tui

4 tháng 2 2016

Hỏi đáp Toán

https://i.imgur.com/3Wy6g2D.jpg

a)A=x+3/x-2

A=x-2+5/x-2

A=1+5/x-2

vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2

x-2 thuộc ước của 5

x-2 thuộc -5;-1;1;5

x = -3;1;3 hoặc 7

giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2

b)để B= 1-2x/2+x thuộc Z thì

1-2x phải chia hết cho 2+x

nên 1-2x-4+4  phải chia hết cho x+2

1-(2x+4)+4  phải chia hết cho x+2

1+4-[2(x+2]  phải chia hết cho x+2

5 -[2(x+2] phải chia hết cho x+2

vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2

suy ra x+2 thuộc ước của 5 

  x+2 thuộc -5;-1;1;5

x=-7;-3;-1;3

giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1

19 tháng 4 2017

bạn làm sai 1 chút ở đầu

25 tháng 2 2016

=8 ở vio dg ko

25 tháng 2 2016

chính xác - cảm ơn bạn

22 tháng 2 2016

Áp dụng BĐT cô si cho 3 số không âm x,y,z ta được:

\(x+y+z\ge3\sqrt[3]{xyz}\Rightarrow1\ge3\sqrt[3]{xyz}\Rightarrow xyz\le\frac{1}{27}\)

\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

=>2.(x+y+z) \(\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

=>\(3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le2\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\frac{8}{27}\)

=>\(B\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\)

Vậy GTLN của B là 8/729 hay k=8/729

=>93k=8