Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*
Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
Vậy 1 < M < 2 nên M không phải là số tự nhiên/
a)A=x+3/x-2
A=x-2+5/x-2
A=1+5/x-2
vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2
x-2 thuộc ước của 5
x-2 thuộc -5;-1;1;5
x = -3;1;3 hoặc 7
giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2
b)để B= 1-2x/2+x thuộc Z thì
1-2x phải chia hết cho 2+x
nên 1-2x-4+4 phải chia hết cho x+2
1-(2x+4)+4 phải chia hết cho x+2
1+4-[2(x+2] phải chia hết cho x+2
5 -[2(x+2] phải chia hết cho x+2
vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2
suy ra x+2 thuộc ước của 5
x+2 thuộc -5;-1;1;5
x=-7;-3;-1;3
giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1
Áp dụng BĐT cô si cho 3 số không âm x,y,z ta được:
\(x+y+z\ge3\sqrt[3]{xyz}\Rightarrow1\ge3\sqrt[3]{xyz}\Rightarrow xyz\le\frac{1}{27}\)
\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
=>2.(x+y+z) \(\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
=>\(3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le2\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\frac{8}{27}\)
=>\(B\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\)
Vậy GTLN của B là 8/729 hay k=8/729
=>93k=8
Đáp án A
Gọi z = x + i y ; x , y ∈ ℝ .
z − i = 2 ⇔ x + i y − i = 2 ⇔ x 2 + y − 1 2 = 4 ⇒ x 2 + y 2 = 2 y + 3
Do đó tập hợp các số phức z là đường tròn tâm I(0;1), bán kính R=2 (như hình vẽ).
z = x 2 + y 2 = 2 y + 3 , − 1 ≤ y ≤ 3 − 2 ≤ x ≤ 2 .
Dễ thấy,
z min = 2 − 1 + 3 = 1 ; z max = 2.3 + 3 = 3.