K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Trên đoạn [-1; 1], ta có :

y = log 5 x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.

Ta có: y(−1) = 2 - - 1  =  2 1  = 2, y(0) =  2 0  = 1, y(1) =  2 1  = 2

Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.

16 tháng 9 2019

Trên đoạn [-1; 1], ta có :

y = log 5 x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.

Ta có: y(−1) = 2 - ( - 1 )  = 2 1  = 2, y(0) = 2 0  = 1, y(1) = 2 1  = 2

Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.

15 tháng 9 2018

y = x 2 + 2 x + m - 4 = ( x + 1 ) 2 + m - 5

Ta có  ( x + 1 ) 2 + m - 5 ∈ m - 5 ; m - 1

Giá trị lớn nhất của hàm số   y = x 2 + 2 x + m - 4 trên đoạn[ -2; 1] đạt giá trị nhỏ nhất khi

  m - 5 < 0 m - 1 > 0 5 - m = m - 1 ⇔ m = 3

Chọn B.

15 tháng 10 2017

8 tháng 9 2019

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

y' = 0 <=> x = 8

Ta có: y(1) = 19, y(8) = 48,  y ( 10 )   =   10 5 3   ≈   46 , 6   >   19

Từ đó:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn D

6 tháng 12 2019

Đáp án B

Phương pháp:

Phương pháp tìm GTLN, GTNN của hàm số y = f(x) trên [a;b]

+) Bước 1: Tính y’, giải phương trình y' = 0 ⇒ xi ∈ [a;b]

+) Bước 2: Tính các giá trị f(a); f(b); f(xi)

+) Bước 3: 

23 tháng 5 2019

18 tháng 7 2019

y ' = - 2 x - 1 2 < 0 trên đoạn [3; 5]. Vậy hàm số nghịch biến trên đoạn [3; 5].

Khi đó trên đoạn [-3,5]: hàm số đạt giá trị lớn nhất tại x = 3 và giá trị lớn nhất bằng 2, hàm số đạt giá trị nhỏ nhất tại x = 5 và giá trị nhỏ nhất = 1.5.

NV
13 tháng 1 2021

\(f\left(x\right)=e^{sinx}-sinx-1\)

\(\Rightarrow f'\left(x\right)=cosx.e^{sinx}-cosx=cosx\left(e^{sinx}-1\right)\)

\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\)

\(f\left(0\right)=0\) ; \(f\left(\dfrac{\pi}{2}\right)=e-2\) ; \(f\left(\pi\right)=0\)

\(\Rightarrow f\left(x\right)_{min}=0\) ; \(f\left(x\right)_{max}=e-2\)