Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên khoảng (− ∞ ;+ ∞ );
Từ đó ta có min f(x) = −1/4; max f(x) = 1/4
trên khoảng
y′ = 0 ⇔ x = π
Hàm số không có giá trị nhỏ nhất. Giá trị lớn nhất của hàm số là: max y = y( π ) = −1
Xét hàm số f(x) = x 3 + 3 x 2 − 72x + 90 trên đoạn [-5;5]
f′(x) =3 x 2 + 6x − 72;
f′(x) = 0
f(−5) = 400; f(5) = −70; f(4) = −86
Ngoài ra, f(x) liên tục trên đoạn [-5;5] và f(−5).f(5) < 0 nên tồn tại x 0 ∈ (−5;5) sao cho f( x 0 ) = 0
Ta có g(x) = |f(x)| ≤ 0 và g( x 0 ) = |f( x 0 )| = 0;
g(−5) = |400| = 400
g(5) = |−70| = 70; g(4) = |f(4)| = |−86| = 86
Vậy min g(x) = g( x 0 ) = 0; max g(x) = g(−5) = 400
Chọn C
Tập xác định của hàm số là ℝ .
Ta có:
Vì trên khoảng - 4 3 ; 0 hàm số đạt giá trị lớn nhất tại x = -1 nên hàm số đạt cực trị tại x = -1( cũng là điểm cực đại của hàm số) và a > 0.
Khi đó f'(x) = 0 ( đều là các nghiệm đơn)
Hàm số đạt cực đại tại x = -1 nên có bảng biến thiên:
=> x = - 3 2 là điểm cực tiểu duy nhất thuộc - 2 ; - 5 4
Vậy hàm số đạt giá trị nhỏ nhất tại x = - 3 2 trên đoạn - 2 ; - 5 4
a) trên khoảng (− ∞ ;+ ∞ );
Từ đó ta có min f(x) = −1/4; max f(x) = 1/4
b) trên khoảng
y′ = 0 ⇔ x = π
Hàm số không có giá trị nhỏ nhất. Giá trị lớn nhất của hàm số là: max y = y(π) = −1.