\(3sin^2x+6cos^2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=3sin^2x+6cos^2=3sin^2x+6\left(1-sin^2x\right)\)

\(=6-3sin^2x\)

Do : \(0\le sin^2x\le1\Rightarrow\left\{{}\begin{matrix}6-3sin^2x\ge3\\6-3sin^2x\le6\end{matrix}\right.\)

11 tháng 3 2019

P= \(1-cos^2x+2cos^2x=1+cos^2x\)

Ta có:

\(0\le cos^2x\le1\)

=> \(1\le P\le2\)

min P=1 <=> \(cos^2x=0\Leftrightarrow cosx=0\Leftrightarrow x=\frac{\pi}{2}+k\pi\)

\(M=\frac{2x+1+x^2+2-x^2-2}{x^2+2}=\frac{x^2+2-\left(x^2-2x+1\right)}{x^2+2}\)

\(M=\frac{\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+2}\)

M lớn nhất khi \(\frac{\left(x-1\right)^2}{x^2+2}\)nhỏ nhất 

Vì \(\left(x-1\right)^2\ge0\forall x\) và \(\left(x^2+2\right)\ge0\forall x\)nên \(\frac{\left(x+1\right)^2}{x^2+2}\)nhỏ nhất khi \(\left(x+1\right)^2=0\)

Dấu ''='' xảy ra khi \(x-1=0\)  \(\Leftrightarrow\)\(x=1\)

Vậy \(M_{max}=1\)khi \(x=1\)

12 tháng 8 2018

câu 1) ta có : \(M=\left(x^2-x\right)^2+\left(2x-1\right)^2=x^4-2x^3+x^2+4x^2-4x+1\)

\(=\left(x^2-x+2\right)^2-3=\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right)^2-3\)

\(\Rightarrow\dfrac{1}{16}\le M\le61\)

\(\Rightarrow M_{min}=\dfrac{1}{16}\)khi \(x=\dfrac{1}{2}\) ; \(M_{max}=61\) khi \(x=3\)

câu 2) điều kiện xác định : \(0\le x\le2\)
đặt \(\sqrt{2x-x^2}=t\left(t\ge0\right)\)

\(\Rightarrow M=-t^2+4t+3=-\left(t-2\right)^2+7\)

\(\Rightarrow3\le M\le7\)

\(\Rightarrow M_{min}=3\)khi \(x=0\) ; \(M_{max}=7\) khi \(x=2\)

câu 3) ta có : \(M=\left(x-2\right)^2+6\left|x-2\right|-6\ge-6\)

\(\Rightarrow M_{min}=-6\) khi \(x=2\)

12 tháng 8 2018

4) điều kiện xác định \(-6\le x\le10\)

ta có : \(M=5\sqrt{x+6}+2\sqrt{10-x}-2\)

áp dụng bunhiacopxki dạng căn ta có :

\(-\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\le5\sqrt{x+6}+2\sqrt{10-x}\le\sqrt{\left(5^2+2^2\right)\left(x+6+10-x\right)}\)

\(\Leftrightarrow-4\sqrt{29}\le5\sqrt{x+6}+2\sqrt{10-x}\le4\sqrt{29}\)

\(\Rightarrow-2-4\sqrt{29}\le B\le-2+4\sqrt{29}\)

\(\Rightarrow M_{max}=-2+4\sqrt{29}\) khi \(\dfrac{\sqrt{x+6}}{5}=\dfrac{\sqrt{10-x}}{2}\Leftrightarrow x=\dfrac{226}{29}\)

\(\Rightarrow M_{min}=-2-4\sqrt{29}\) dấu của bđt này o xảy ra câu 5 lm tương tự

31 tháng 1 2020

Bạn tham khảo nhé!

Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath

12 tháng 5 2016

Điều kiện \(x\ge-1\) và \(y\ge-2\). Gọi T là tập giá trị  của K. Khi đó \(m\in T\) khi và chỉ khi hệ sau có nghiệm :

\(\begin{cases}x-3\sqrt{x+1}=3\sqrt{y+2}-y\\x+y=m\end{cases}\) \(\Leftrightarrow\begin{cases}3\left(\sqrt{x+1}+\sqrt{y+2}\right)=m\\x+y=m\end{cases}\) (1)

Đặt \(u=\sqrt{x+1};v=\sqrt{y+2}\), điều kiện \(u\ge0;v\ge0\)

Thay vào (1), ta được : 

\(\begin{cases}3\left(u+v\right)=m\\u^2+v^2=m+3\end{cases}\) \(\Leftrightarrow\begin{cases}u+v=\frac{m}{3}\\uv=\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)\end{cases}\)

Hay u và v là nghiệm của phương trình :

\(t^2-\frac{m}{3}t+\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)=0\)

\(\Leftrightarrow18t^2-6mt+m^2-9m-27=0\)  (2)

Hệ (1) có nghiệm x, y thỏa mãn điều kiện  \(x\ge-1\) và \(y\ge-2\) khi và chỉ khi (2) có nghiệm không âm, hay :

\(\begin{cases}\Delta'=-9\left(m^2-18m-54\right)\ge0\\S=\frac{m}{3}\ge0\\P=\frac{m^2-9m-27}{18}\ge0\end{cases}\)

\(\Leftrightarrow\frac{9+3\sqrt{21}}{2}\le m\le9+3\sqrt{15}\)

Vậy \(T=\left[\frac{9+3\sqrt{21}}{2};9+3\sqrt{15}\right]\)

Suy ra Max K = \(\frac{9+3\sqrt{21}}{2}\)

           Min K = \(9+3\sqrt{15}\)