Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,a+b\le\sqrt{2\left(a^2+b^2\right)}\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(LuonĐung\right)\)
dấu "=" khi a = b
2, ĐKXĐ: x > 1 ; y > 2
Áp dụng bđt Bunhiacopxki
\(S=\sqrt{x-1}+\sqrt{y-2}\le\sqrt{\left(1+1\right)\left(x-1+y-2\right)}\)
\(=\sqrt{2\left(4-3\right)}=\sqrt{2}\)
\("="\Leftrightarrow\hept{\begin{cases}x-1=y-2\\x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{5}{2}\end{cases}}\left(TmĐKXĐ\right)\)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
đẳng thức trái luôn luôn lớn hơn đẳng thức phải(nhờ bđt coossi) đấu = xảy ra <=> x=2 và y=-3
pt\(\Leftrightarrow\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
Áp dụng BĐT cô si cho 2 số ko âm ta có:
\(\sqrt{x-1}=\sqrt{1\left(x-1\right)}\le\frac{x+1-1}{2}=\frac{x}{2}\)
\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)(vì x dương)
\(\sqrt{y-4}=\frac{1}{2}\sqrt{4\left(y-4\right)}\le\frac{1}{2}.\frac{4+y-4}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{\sqrt{y-4}}{y}\le\frac{1}{4}\)(vì y dương)
\(\Rightarrow Q=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Vậy \(Q\)max là \(\frac{3}{4}\)khi \(x=2,y=8\)
Đặt \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)=\left(a,b,c\right)\) với a,b,c là các số không âm.
Khi đó ta có \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\) và ta cần tìm giá trị lớn nhất của biểu thức \(N=abc\)
Ta có \(\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)
Tương tự \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\) , \(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)
Nhân theo vế được \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\frac{1}{8}\) hay max N = 1/8 . Bạn tự tìm giá trị x,y,z
x+y=4 nên xảy ra các trường hợp là x=0,y=4 ; x=1,y=3 ; x=2,y=2 ; x=3,y=1 ; x=4,y=0
TH1: x=0,y=4
=>\(\sqrt{-1}\)+\(\sqrt{2}\)thì ko có chuyện đó
TH2: x=1,y=3
=>\(\sqrt{0}\)+\(\sqrt{1}\)bằng 1
TH3:x=2,y=2
=>\(\sqrt{1}\)+\(\sqrt{0}\)bằng 1
TH4:x=3,y=1 bằng 1 bạn tự tính
TH5: x=4,y=0 thì cũng ko có chuyện đó
Vậy tổng S lớn nhất là 1.
k mình nhé hơi thủ công
Tại mình giải theo kiểu lớp 6 và ... bấm máy tính bạn ah
\(\hept{\begin{cases}\sqrt{x-1}>=0\\\sqrt{y-2}>=0\end{cases}}\)
\(=>\hept{\begin{cases}x-1>=0\\y-2>=0\end{cases}}\)
\(=>\)Chỉ còn 2 trường hợp
TH1:\(\hept{\begin{cases}x=2\\y=2\end{cases}}\)
\(< =>S=\sqrt{2-1}+\sqrt{2-2}\)
\(< =>S=1\)
TH2:\(\hept{\begin{cases}x=1\\y=3\end{cases}}\)
\(=>S=\sqrt{1-1}+\sqrt{3-2}\)
\(=>S=1\)
Vậy GTLN của S=1, Khi x=2,y=2 hoặc x=1,y=3