K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2023

Đặt \(P=\sqrt{21-2x}+\sqrt{2x-3}\)

\(\Rightarrow P^2=\left(1.\sqrt{21-2x}+1.\sqrt{2x-3}\right)^2\)

\(\le\left(1^2+1^2\right)\left[\left(\sqrt{21-2x}\right)^2+\left(\sqrt{2x-3}\right)^2\right]\)

\(=2.18=36\)

\(\Rightarrow P\le6\)

Dấu "=" xảy ra khi \(21-2x=2x-3\Leftrightarrow x=6\)

Vậy GTLN của biểu thức đã cho là 6.

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{21-2x}+\sqrt{2x-3})^2\leq (21-2x+2x-3)(1+1)=36$

$\Rightarrow \sqrt{21-2x}+\sqrt{2x-3}\leq 6$

Vậy GTLN của biểu thức là $6$. Giá trị này đạt được khi:

$21-2x=2x-3\Leftrightarrow x=6$

 

25 tháng 2 2017

Đật 3 cái mẫu bên VT lần lượt là x,y,z rồi áp dụng C-S dạng engel

6 tháng 2 2017

Để dễ nhìn ta đặt \(\hept{\begin{cases}\sqrt{2x-3}=a\\\sqrt{y-2}=b\\\sqrt{3z-1}=c\end{cases}\left(a,b,c\ge0\right)}\)

Vậy BĐT đầu tương đương \(T=\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c\)

Áp dụng BĐT C-S dạng Engel ta có:

\(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}=\frac{1^2}{a}+\frac{2^2}{b}+\frac{4^2}{c}\ge\frac{\left(1+2+4\right)^2}{a+b+c}=\frac{49}{a+b+c}\)

Tiếp tục dùng AM-GM ta có: \(VT\ge\frac{49}{a+b+c}+\left(a+b+c\right)\ge2\sqrt{\frac{49}{a+b+c}\cdot\left(a+b+c\right)}=2\sqrt{49}=14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=1\\b=2\\c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}\)

6 tháng 2 2017

nhìn qua thì chắc AM-GM+Cauchy-schwarz chắc thế :)

24 tháng 7 2023

\(A=2x^2+2\sqrt{2}x+3\\ =2\left(x^2+\sqrt{2}x+\dfrac{3}{2}\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+1\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}\right)+2\\ =2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\)

Ta có \(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2\ge0\forall x\)

\(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\ge2\forall x\)

Dấu bằng xảy ra khi : \(x+\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x=\dfrac{-\sqrt{2}}{2}\)

Vậy \(Min_A=2\) khi \(x=\dfrac{-\sqrt{2}}{2}\)

13 tháng 11 2021

\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)

13 tháng 11 2021

a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" \(\Leftrightarrow x=-1\)

b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)

c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)

Dấu "=" \(\Leftrightarrow x=2\)

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

a: \(P=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b: \(P=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi x=1/4

8 tháng 4 2023

- Bổ sung điều kiện: \(a,b,c>0\)

Ta chứng minh bất đẳng thức:

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) (bạn tự chứng minh bằng phép biến đổi tương đương)

Áp dụng bất đẳng thức trên ta có:

\(P=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\le3\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right]\)

\(=6\left(a+b+c\right)=6.3=18\)

\(\Rightarrow P\le\sqrt{18}=3\sqrt{2}\)

Dấu "=" xảy ra khi a=b=c=1.

Vậy \(MinP=\sqrt{18}\)

15 tháng 7 2023

A = (15/√x) - (11x + 2√x - 3) - (3√x - 2√x - 1) - (2√x + 3√x - 3)

Tiếp theo, kết hợp các thành phần tương tự:

A = 15/√x - 11x - 2√x + 3 + 3√x - 2√x + 1 - 2√x - 3√x + 3

Đơn giản hóa biểu thức:

A = -11x + 15/√x + 4

Để tìm giá trị lớn nhất của A, ta có thể tìm điểm đạt cực đại của hàm số A(x). Tuy nhiên, để làm điều này, cần biết thêm về giá trị của x.

 

Sửa đề: (3căn x-2)/căn x-1-(2căn x+3)/(căn x+3)\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(A=\dfrac{-5\sqrt{x}-15+17}{\sqrt{x}+3}==-5+\dfrac{17}{\sqrt{x}+3}< =\dfrac{17}{3}-5=\dfrac{2}{3}\)

Dấu = xảy ra khi x=0