Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
3n+2/ n-1 =3n-3+5/n-1=3 + 5/ n-1
Để phân số a nguyên
=>n-1 thuộc Ư(5)
=>n-1 thuoc {-5 ;-1 ;1 ;5 }
n thuộc {-4 ; 0 :2 :6}
Chú ý : Vì là lớp 6 nên giải zậy chứ lớp 9 là cách lm này là k chuẩn........( vì n không thuộc Z)
b,2B=1=1/2 +......+1/22015
2B-B=(1 +1/2 +.....+1/22015) - (1/2 +1/22+......+1/22016)
B=1 -1/22016
Vi 1-1/22016<1
=>B<1
a)
\(A=\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để A nguyên thì 5 chia hết cho n-1
\(\Rightarrow n-1\in U\left(5\right)=+-1;+-5\)
lập bảng nhé!
b)
\(B=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
\(\Rightarrow\frac{1}{2}B=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
\(\Rightarrow B=\left(B-\frac{1}{2}B\right).2=\left(\frac{1}{2}-\frac{1}{2^{2017}}\right).2\)
\(\Rightarrow B=1-\frac{1}{2^{2016}}< 1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Leftrightarrow x+2=41\)
\(\Leftrightarrow x=41-2\)
\(\Leftrightarrow x=39\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)
A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)
A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)
A = \(\frac{1}{1}-\frac{1}{101}\)
A = \(\frac{100}{101}\)
Vậy A = \(\frac{100}{101}\)
B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)
B = \(\frac{5}{2}.\frac{100}{101}\)
B = \(\frac{250}{101}\)
Vậy B = \(\frac{250}{101}\)
2)
Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)
\(\Rightarrow d=1\)
Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản
Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(x-3=0\)
\(\Rightarrow x=3\)
Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018
b)Vì \(\left|x-5\right|\ge0\)
\(\Rightarrow\left|x-5\right|+2016\ge2016\)
Dấu "=" xảy ra khi \(x-5=0\)
\(\Rightarrow x=5\)
Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016
c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất
\(\Rightarrow x-3< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-3\le-1\)
Dấu "=" xảy ra khi \(x=-1+3=2\)
Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)
d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)
D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất
\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất
\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN
\(\Rightarrow x-5< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-5\le-1\)
Dấu "=" xảy ra khi \(x=-1+5=4\)
Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)
~Học tốt^^~
Phần kết luận: Vậy với x=...... thì "biểu thức"...
em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý
![](https://rs.olm.vn/images/avt/0.png?1311)
A =15/x+2 + 14/x+2 = 29/x+2
b) x+2 là U(29) = { -1;1;-29;29}
=> x ={ -3;-1;-31;27}
Ta có :
\(x^2\ge0\)
\(\Leftrightarrow\)\(3x^2\ge0\)
\(\Leftrightarrow\)\(3x^2+2016\ge2016\)
\(\Leftrightarrow\)\(\frac{3}{3x^2+2016}\le\frac{3}{2016}\)
\(\Leftrightarrow\)\(\frac{3}{3x^2+2016}\le\frac{1}{672}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x^2=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy GTLN của \(A\) là \(\frac{1}{672}\) khi \(x=0\)
Chúc bạn học tốt ~
Ta có :
\(\left|x-2018\right|\ge0\)
\(\Leftrightarrow\)\(2\left|x-2018\right|\ge0\)
\(\Leftrightarrow\)\(2\left|x-2018\right|+3\ge3\)
\(\Leftrightarrow\)\(\frac{1}{2\left|x-2018\right|+3}\le\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2018\right|=0\)
\(\Leftrightarrow\)\(x-2018=0\)
\(\Leftrightarrow\)\(x=2018\)
Vậy GTLN của \(B\) là \(\frac{1}{3}\) khi \(x=2018\)
Chúc bạn học tốt ~