Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
A=\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)
\(C=\) \(\frac{x^2+8}{x^2+2}\)\(=\frac{\left(x^2+2\right)+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Ta có \(x^2\ge0\) \(\forall x\)
=> \(x^2+2\ge2\) \(\forall x\)
=> \(\frac{6}{x^2+2}\le\frac{6}{2}\) \(\forall x\)
=> \(1+\frac{6}{x^2+2}\le4\)
\(MaxC=4\Leftrightarrow x=0\)
nhầm
P=-x^2-8x+5
\(P=x^2-8x+16-11\)
\(P=\left(x-4\right)^2-11\)
Có: \(\left(x-4\right)^2\ge0\forall x\)
=> \(\left(x-4\right)^2-11\ge-11\forall x\)
=> \(P\ge-11\)
Vậy P min = -11 <=> \(\left(x-4\right)^2=0\)
<=> x = 4