Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
ta co \(1.\sqrt{x-1}\le\frac{x+1-1}{2}=\frac{x}{2}\)
\(2.\sqrt{y-4}=\sqrt{4}\sqrt{y-4}\le\frac{y-4+4}{2}=\frac{y}{2}\)
\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{4}\sqrt{y-4}}{2y}\le\frac{\frac{x}{2}}{x}+\frac{\frac{y}{2}}{2y}=\frac{x}{2x}+\frac{y}{4y}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
vay max \(M=\frac{3}{4}\)khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)
Lời giải:
ĐK: \(x\geq 1; y\geq 4\)
Áp dụng BĐT AM-GM:
\(\sqrt{x-1}=\sqrt{1(x-1)}\leq \frac{x-1+1}{2}=\frac{x}{y}\)
\(\Rightarrow y\sqrt{x-1}\leq \frac{xy}{2}\)
\(\sqrt{y-4}=\frac{1}{2}\sqrt{4(y-4)}\leq \frac{4+(y-4)}{4}=\frac{y}{4}\)
\(\Rightarrow x\sqrt{y-4}\leq \frac{xy}{4}\)
Do đó: \(M\leq \frac{\frac{xy}{2}+\frac{xy}{4}}{xy}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Vậy \(M_{\max}=\frac{3}{4}\Leftrightarrow x=2; y=8\)
\(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
Áp dụng BĐT Cauchy : \(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{\left(x-1\right).1}}{x}\le\frac{x-1+1}{2x}=\frac{1}{2}\)
\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{\left(y-4\right).4}}{4y}\le\frac{y-4+4}{4y}=\frac{1}{4}\)
Cộng theo vế : \(M\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)
Vậy ......................................
pt\(\Leftrightarrow\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
Áp dụng BĐT cô si cho 2 số ko âm ta có:
\(\sqrt{x-1}=\sqrt{1\left(x-1\right)}\le\frac{x+1-1}{2}=\frac{x}{2}\)
\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)(vì x dương)
\(\sqrt{y-4}=\frac{1}{2}\sqrt{4\left(y-4\right)}\le\frac{1}{2}.\frac{4+y-4}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{\sqrt{y-4}}{y}\le\frac{1}{4}\)(vì y dương)
\(\Rightarrow Q=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Vậy \(Q\)max là \(\frac{3}{4}\)khi \(x=2,y=8\)
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
Lời giải:
Áp dụng BĐT AM-GM ta có:
\((x-1)+1\geq 2\sqrt{x-1}\Leftrightarrow \frac{x}{2}\geq \sqrt{x-1}\)
\(\Rightarrow yz\sqrt{x-1}\leq \frac{xyz}{2}\)
\((y-4)+4\geq 4\sqrt{y-4}\) \(\Leftrightarrow \frac{y}{4}\geq \sqrt{y-4}\)
\(\Rightarrow zx\sqrt{y-4}\leq \frac{xyz}{4}\)
\((z-9)+9\geq 6\sqrt{z-9}\Leftrightarrow \frac{z}{6}\geq \sqrt{z-9}\)
\(\Rightarrow xy\sqrt{z-9}\leq \frac{xyz}{6}\)
Do đó:
\(Q\leq \frac{\frac{xyz}{2}+\frac{xyz}{4}+\frac{xyz}{6}}{xyz}=\frac{xyz.\frac{11}{12}}{xyz}=\frac{11}{12}\)
Vậy \(Q_{\max}=\frac{11}{12}\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-1=1\\ y-4=4\\ z-9=9\end{matrix}\right.\Leftrightarrow x=2; y=8; z=18\)
from giả thiết => x+y+z=xyz
biến đổi như sau:\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}=\dfrac{x}{\sqrt{yz+x^2yz}}=\dfrac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
=\(\sqrt{\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)
\(\Rightarrow M=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-4}}{y}=\dfrac{\sqrt{\left(x-1\right)\cdot1}}{x}+\dfrac{4\sqrt{y-4}}{4y}\le\dfrac{x-1+1}{2x}+\dfrac{y-4+4}{4y}=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{3}{4}\) Dấu = xảy ra \(\Leftrightarrow x=2;y=8\)