Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(-2x^2-8x+1\)
\(=-2x^2-8x-8+9\)
\(=-2\left(x^2+4x+4\right)+9\)
\(=-2\left(x+2\right)^2+9< =9\forall x\)
Dấu '=' xảy ra khi x+2=0
=>x=-2
b: \(-5x^2-y^2-4xy+4x+3\)
\(=\left(-4x^2-4xy-y^2\right)+\left(-x^2+4x-4\right)+7\)
\(=-\left(2x+y\right)^2-\left(x-2\right)^2+7< =7\forall x,y\)
Dấu '=' xảy ra khi 2x+y=0 và x-2=0
=>x=2 và y=-2x=-4
\(\frac{2}{8x-4x^2-5}\)
Xét mẫu: \(8x-4x^2-5=-4x^2+8x-4-1=-\left(4x^2-8x+4\right)-1=-\left(2x-2\right)^2-1\)
Vì \(-\left(2x-2\right)^2\le0\Rightarrow-\left(2x-2\right)^2-1\le-1\)
Nên \(\frac{2}{8x-4x^2-5}\le\frac{2}{-1}\le-2\)
Vậy giá trị lớn nhất của \(\frac{2}{8x-4x^2-5}\)là-2
A= 2x^2 + 4x + xy + 2y
=(xy+2x2)+(2y+4x)
=x(y+2x)+2(y+2x)
=(x+2)(y+2x)
Thay x=88,y=-76 ta được:
A=(88+2)*(-76+2*88)
=90*100
=9 000
B= x^2 +xy - 7x - 7y
=(xy-7y)+(x2-7x)
=y(x-7)+x(x-7)
=(x-7)(y+x).Thay vào tính bình thường
\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:
Ta có:
\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi \(x\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x-1\right)^2=0\) \(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) \(x=1\)
Vậy, \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)
-------------------------------------------------
\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi \(x\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\) \(\Leftrightarrow\) \(2x+1=0\) \(\Leftrightarrow\) \(x=-\frac{1}{2}\)
Vậy, \(B_{max}=4\) \(\Leftrightarrow\) \(x=-\frac{1}{2}\)
____________________________________
\(\left(\text{*}\text{*}\right)\) Tìm giá trị nhỏ nhất của biểu thức sau:
Từ \(A=\frac{x^2+1}{x^2-x+1}\)
\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\) với mọi \(x\)
Vì \(3A\ge2\) nên \(A\ge\frac{2}{3}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x+1\right)^2=0\) \(\Leftrightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
Vậy, \(A_{min}=\frac{2}{3}\) \(\Leftrightarrow\) \(x=-1\)
Câu b) tự giải
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
\(K=\frac{9}{\left(4x^2+4x+1\right)+\left(y^2+9y+9\right)+2}=\frac{9}{\left(2x+1\right)^2+\left(y+3\right)^2+2}\le\frac{9}{2}\)
K đạt hía trị lớn nhất khi mẫu số =...đạt giá trị nhỏ nhất
\(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(2x+1\right)^2+\left(y+3\right)^2+2\ge2}\)
\(\Rightarrow K_{max}=\frac{9}{2}\) khi \(\hept{\begin{cases}x=-\frac{1}{2}\\y=-3\end{cases}}\)
4x^2 + 4x + 9y + y^2 + 12
= (2x)^2 + 4x + 4 + y^2 + 9y + (9/2)^2 + 23/4
...................
bạn lập luận cho cái này lơn hơn hoặc = 0
rồi nghich đâỏ lên nhé
chúc bạn học giỏi
nếu có gì thắc mắc hỏi mk nhé