Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\)
vậy GTLN của E là 21 khi \(x=-4\)
\(F=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)=-\left(x-2\right)^2+5\le5\)
vay.............................................
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Để \(\frac{2}{-4x^2+8x-5}\) lớn nhất thì \(-4x^2+8x-5\) phải bé nhất
Ta có: \(-4x^2+8x-5=-4x^2+8x-4-1=-4\left(x^2-2x+1\right)-1\)
\(=-4\left(x-1\right)^2-1\)
Vì : \(\left(x-1\right)^2\ge0\)=> \(-4\left(x-1\right)^2\le0\)=> \(-4\left(x-1\right)^2-1\le-1\)
=> \(\frac{2}{-4x^2+8x-5}\ge\frac{2}{-1}=-2\)
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy giá trị nhỏ nhất của biểu thức \(\frac{2}{-4x^2+8x-5}\) là -2 tại x = 1.
\(E=\frac{5}{2x^2+3x+5}=\frac{5}{2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)+\frac{35}{8}}=\frac{5}{2\left(x+\frac{3}{4}\right)^2+\frac{35}{8}}\le\frac{5}{\frac{35}{8}}=\frac{8}{7}\)
Nên GTLN của E là \(\frac{8}{7}\) đạt được khi x=\(-\frac{3}{4}\)
\(F=\frac{-2}{4x-x^2-5}=\frac{2}{x^2-4x+5}=\frac{2}{x^2-2.2x+4+1}=\frac{2}{\left(x-2\right)^2+1}\le\frac{2}{1}=2\)
Nên GTLN của F là 2 đạt được khi \(x=2\)
a) ta có : \(4x^2+4x-3=4\left(x^2+x+\dfrac{1}{4}\right)-4=4\left(x+\dfrac{1}{2}\right)^2-4\ge-4\)
\(\Rightarrow\) GTNN của biểu thức là \(-4\) khi \(x=\dfrac{-1}{2}\)
b) ta có : \(2x^2-8x=2\left(x^2-4x+4\right)-8=2\left(x-2\right)^2-8\ge-8\)
\(\Rightarrow GTNN\) của biểu thức là \(-8\) khi \(x=2\)
c) ta có : \(4x-x^2=-x^2+4x-4+4=-\left(x-2\right)^2+4\le4\)
\(\Rightarrow GTLN\) của biểu thức là \(4\) khi \(x=2\)d) ta có : \(2x-2x^2-7=-2x^2+2x-\dfrac{1}{2}-\dfrac{13}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{13}{2}\le\dfrac{-13}{2}\)
\(\Rightarrow GTLN\) của biểu thức là \(\dfrac{-13}{2}\) khi \(x=\dfrac{1}{2}\)
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
\(A=x^2-4x+5\)
=\(\left(x^2-4x+4\right)+1\)
\(=\left(x+2\right)^2+1\)
Do \(\left(x+2\right)^2\ge0\forall x\)
=>\(\left(x+2\right)^2+1\ge1\forall x\)
=> \(A\ge1\forall x\)
Dấu = xảy ra khi:
\(\left(x+2\right)^2=0\)
<=> \(x+2=0\)
<=>\(x=-2\)
Vậy Amin \(\ge\) 1 khi \(x=-2\)
\(B=2x^2+4x+5\)
\(=\left(x^2+2x+1\right)+\left(x^2+2x+1\right)+3\)
\(=\left(x+1\right)^2+\left(x+1\right)^2+3\)
Do \(\left(x+1\right)^2\ge0\forall x\)
=>\(\left(x+1\right)^2+\left(x+1\right)^2+3\ge3\forall x\)
=> \(B\ge3\forall x\)
Dấu = xảy ra khi:
\(\left(x+1\right)^2=0\)
<=>\(x+1=0\)
<=> \(x=-1\)
Vậy \(B_{min}\) \(\ge3\)\(khi\)\(x=-1\)
Chúc bạn học tốt~!
\(M=19-6x-9x^2\)
\(-M=9x^2+6x-19\)
\(=\left(9x^2+6x+1\right)-20\)
\(=\left(3x+1\right)^2-20\)
\(Do\)\(\left(3x+1\right)^2\ge0\)\(\forall x\)
=>\(\left(3x+1\right)^2-20\ge-20\)\(\forall x\)
=>\(-M\ge-20\)\(\forall x\)
=> \(M\le20\)\(\forall x\)
Dấu = xảy ra khi:
\(\left(3x+1\right)^2=0\)
<=> \(3x+1=0\)
<=> \(3x=-1\)
<=> \(x=\frac{-1}{3}\)
Vậy \(M_{max}\)\(\le20\)\(khi\)\(x=\frac{-1}{3}\)
\(N=1+4x-x^2\)
\(-N=x^2-4x+1\)
\(=\left(x^2-4x+4\right)-3\)
\(=\left(x-2\right)^2-3\)
\(Do\)\(\left(x-2\right)^2\)\(\ge0\)\(\forall x\)
=>\(\left(x-2\right)^2-3\)\(\ge-3\)\(\forall x\)
=>\(-N\ge-3\)\(\forall x\)
=>\(N\le3\)\(\forall x\)
Dấu = xảy ra khi:
\(\left(x+2\right)^2=0\)
<=> \(x+2=0\)
<=>\(x=-2\)
Vậy \(N_{max}\)\(\le3\)\(khi\)\(x=-2\)
Chúc bạn học tốt ~! :)
+) \(M=19-6x-9x^2=-9x^2-6x+19=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\Rightarrow M=-\left(3x+1\right)^2+20\le20\)
Dấu "=" xảy ra khi -(3x+1)2=0 <=>x=-1/3
Vậy Mmax=20 khi x=-1/3
+) \(N=1+4x-x^2=-x^2+4x+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\)
tiếp tục giống M
Ta có
\(-4x^2+8x-5=-4\left(x^2-2x+1\right)-1=-1-4\left(x-1\right)^2\)
Nhận thấy \(-4\left(x-1\right)^2\le0\forall x=>-1-4\left(x-1\right)^2\le-1\forall x\)
Dấu "=" xảy ra khi x-1=0=> x=1
Vậy GTLN của -4x2+8x-5 là -1 khi x=1