Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=-x^4+4x+2015\)
\(\Leftrightarrow-f\left(x\right)=x^4-4x-2015\)
\(\Leftrightarrow-f\left(x\right)=\left(x^4-4x^2+4\right)+\left(4x^2-4x+1\right)-2020\)
\(\Leftrightarrow f\left(x\right)=\left(x^2-2\right)^2+\left(2x-1\right)^2-2020\)
Mà : \(\left(x^2-2\right)^2\ge0\forall x\)
\(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-f\left(x\right)\ge-2020\)
\(\Leftrightarrow f\left(x\right)\le2020\)
Dấu bằng xảy ra khi :
\(\hept{\begin{cases}x^2-2=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=2\\2x=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm\sqrt{2}\\x=\frac{1}{2}\end{cases}}\)
\(4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2x+1+3\right)\)
\(=-\left[\left(x-1\right)^2+3\right]=-\left(x-1\right)^2-3\le-3\)
Vậy GTLN của bt là -3\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(4x-x^2-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)
\(=-\left[\left(x-2\right)^2+1\right]=-\left(x-2\right)^2-1\le-1\)
Vậy GTLN của bt là -1\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!
nghĩ thui
Giá trị lớn nhất=2018